Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
llama3_pytorch
Commits
5985275a
"vscode:/vscode.git/clone" did not exist on "ca0fe0d521202c8823b0bc742f7974507b7c88a6"
Commit
5985275a
authored
Jul 30, 2024
by
Rayyyyy
Browse files
Update llama-factory in README
parent
2ceabd9d
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
39 additions
and
2 deletions
+39
-2
README.md
README.md
+38
-1
download_models.py
download_models.py
+1
-1
No files found.
README.md
View file @
5985275a
...
...
@@ -62,8 +62,10 @@ pip install -e .
```
## 训练
### xtuner微调方法
1.
训练库安装(非llama3_pytorch目录下),请注意所需库版本
1.
训练库安装(
**非llama3_pytorch目录下**
),安装版本为
**v0.1.18**
```
bash
pip uninstall flash-attn
# 2.0.4+82379d7.abi0.dtk2404.torch2.1
# docker环境含有deepspeed的可不进行安装, 需要对照版本是否一致即可
...
...
@@ -91,6 +93,41 @@ or
NPROC_PER_NODE
=
${
DCU_NUM
}
xtuner train ./llama3_8b_instruct_qlora_alpaca_e3_M.py
--deepspeed
deepspeed_zero2
--work-dir
/path/of/saves
```
### Llama Factory 微调方法
1.
训练库安装(
**非llama3_pytorch目录下**
),安装版本为
**v0.6.3**
```
git clone -b v0.6.3 http://developer.hpccube.com/codes/OpenDAS/llama-factory.git
```
具体安装方法请参考Llama-Factory仓库的README。
2.
通过
[
预训练权重
](
#预训练权重
)
下载预训练模型,当前用例使用
[
Meta-Llama-3-8B-Instruct
](
http://113.200.138.88:18080/aimodels/Meta-Llama-3-8B-Instruct
)
模型;
3.
选择
`single_node.sh`
启动的,需要确认
`single_config.yaml`
文件中
`num_processes`
参数与设置的显卡数量一致。
4.
使用
**deepspeed**
进行多机多卡训练,需先安装
**pdsh**
(若已安装可忽略),保证服务器之间
**通讯免密**
。
#### 全参微调
```
bash
cd
/your_code_path/llama_factory/examples/full_multi_gpu
```
**参数修改**
:
--model_name_or_path 修改为待训练模型地址,如 /data/Meta-llama3-models/Meta-Llama-3-8B-Instruct
--dataset 微调训练集名称,可选数据集请参考/LLaMA-Factory-0.6.3/data/dataset_info.json
--template 将 default 修改为 llama3
--output_dir 模型保存地址
--fp16 或 --bf16 开启混合精度,单精度可使用 --pure_bf16
其他参数如:--learning_rate、--save_steps可根据自身硬件及需求进行修改。
#### lora微调
```
bash
cd
/your_code_path/llama_factory/examples/lora_multi_gpu
```
参数解释同
[
#全参微调
](
#全参微调
)
## 推理
预训练模型下载
请参考下面的
[
预训练权重
](
#预训练权重
)
章节,不同的模型需要不同的模型并行(MP)值,如下表所示:
...
...
download_models.py
View file @
5985275a
...
...
@@ -3,6 +3,6 @@ from modelscope import snapshot_download
# LLM-Research/Meta-Llama-3-8B、LLM-Research/Meta-Llama-3-8B-Instruct
# LLM-Research/Meta-Llama-3-70B、LLM-Research/Meta-Llama-3-70B-Instruct
# 下面以 LLM-Research/Meta-Llama-3-8B-Instruct 为例
# 下面以 LLM-Research/Meta-Llama-3-8B-Instruct 为例
, cache_dir修改为保存模型路径
model_dir
=
snapshot_download
(
'LLM-Research/Meta-Llama-3-8B-Instruct'
,
cache_dir
=
"/your_model_save_path/"
)
print
(
model_dir
)
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment