eval.py 9.31 KB
Newer Older
luopl's avatar
init  
luopl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# Copyright (c) 2024, Mingyuan Zhou. All rights reserved.
#
# This work is licensed under APACHE LICENSE, VERSION 2.0
# You should have received a copy of the license along with this
# work. If not, see https://www.apache.org/licenses/LICENSE-2.0.txt


import os
import re
import click
import tqdm
import numpy as np
import torch
import PIL.Image

import torch
from diffusers import AutoPipelineForText2Image
from ..linfusion import LinFusion
from . import distributed as dist


#----------------------------------------------------------------------------
# Wrapper for torch.Generator that allows specifying a different random seed
# for each sample in a minibatch.

class StackedRandomGenerator:
    def __init__(self, device, seeds):
        super().__init__()
        self.generators = [torch.Generator(device).manual_seed(int(seed) % (1 << 32)) for seed in seeds]

    def randn(self, size, **kwargs):
        assert size[0] == len(self.generators)
        return torch.stack([torch.randn(size[1:], generator=gen, **kwargs) for gen in self.generators])

    def randn_like(self, input):
        return self.randn(input.shape, dtype=input.dtype, layout=input.layout, device=input.device)

    def randint(self, *args, size, **kwargs):
        assert size[0] == len(self.generators)
        return torch.stack([torch.randint(*args, size=size[1:], generator=gen, **kwargs) for gen in self.generators])

#----------------------------------------------------------------------------
# Parse a comma separated list of numbers or ranges and return a list of ints.
# Example: '1,2,5-10' returns [1, 2, 5, 6, 7, 8, 9, 10]

def parse_int_list(s):
    if isinstance(s, list): return s
    ranges = []
    range_re = re.compile(r'^(\d+)-(\d+)$')
    for p in s.split(','):
        m = range_re.match(p)
        if m:
            ranges.extend(range(int(m.group(1)), int(m.group(2))+1))
        else:
            ranges.append(int(p))
    return ranges

def read_file_to_sentences(filename):
    # Initialize an empty list to store the sentences
    sentences = []

    # Open the file
    with open(filename, 'r', encoding='utf-8') as file:
        # Read each line from the file
        for line in file:
            # Strip newline and any trailing whitespace characters
            clean_line = line.strip()
            # Add the cleaned line to the list if it is not empty
            if clean_line:
                sentences.append(clean_line)
    
    return sentences

#----------------------------------------------------------------------------

def compress_to_npz(folder_path, num=50000):
    # Get the list of all files in the folder
    npz_path = f"{folder_path}.npz"
    file_names = os.listdir(folder_path)

    # Filter the list of files to include only images
    file_names = [file_name for file_name in file_names if file_name.endswith(('.png', '.jpg', '.jpeg'))]
    num = min(num, len(file_names))
    file_names = file_names[:num]

    # Initialize a dictionary to hold image arrays and their filenames
    samples = []

    # Iterate through the files, load each image, and add it to the dictionary with a progress bar
    for file_name in tqdm.tqdm(file_names, desc=f"Compressing images to {npz_path}"):
        # Create the full path to the image file
        file_path = os.path.join(folder_path, file_name)
        
        # Read the image using PIL and convert it to a NumPy array
        image = PIL.Image.open(file_path)
        image_array = np.asarray(image).astype(np.uint8)
        
        samples.append(image_array)
    samples = np.stack(samples)

    # Save the images as a .npz file
    np.savez(npz_path, arr_0=samples)
    print(f"Images from folder {folder_path} have been saved as {npz_path}")

#----------------------------------------------------------------------------


@click.command()
@click.option('--outdir',                  help='Where to save the output images', metavar='DIR',                   type=str, required=True)
@click.option('--seeds',                   help='Random seeds (e.g. 1,2,5-10)', metavar='LIST',                     type=parse_int_list, default='0-63', show_default=True)
@click.option('--subdirs',                 help='Create subdirectory for every 1000 seeds',                         is_flag=True)
@click.option('--batch', 'max_batch_size', help='Maximum batch size', metavar='INT',                                type=click.IntRange(min=1), default=16, show_default=True)
@click.option('--num', 'num_fid_samples',  help='Maximum num of images', metavar='INT',                             type=click.IntRange(min=1), default=30000, show_default=True)
@click.option('--text_prompts', 'text_prompts',   help='captions filename; the default [prompts/captions.txt] consists of 30k COCO2014 prompts', metavar='PATH|URL',         type=str, default='assets/captions.txt', show_default=True)
@click.option('--repo_id', 'repo_id',   help='diffusion pipeline filename', metavar='PATH|URL',                     type=str, default='runwayml/stable-diffusion-v1-5', show_default=True)
@click.option('--use_fp16',             help='Enable mixed-precision training', metavar='BOOL',                     type=bool, default=False, show_default=True)
@click.option('--use_bf16',             help='Enable mixed-precision training', metavar='BOOL',                     type=bool, default=False, show_default=True)
@click.option('--enable_compress_npz',         help='Enable compressinve npz', metavar='BOOL',                             type=bool, default=False, show_default=True)
@click.option('--num_steps_eval', 'num_steps_eval',      help='Set as 25 by default', metavar='INT',      type=click.IntRange(min=0), default=25, show_default=True)
@click.option('--guidance_scale', 'guidance_scale',      help='Scale of classifier-free guidance. Set as 7.5 by default', metavar='FLOAT',      type=click.FloatRange(min=1.0), default=7.5, show_default=True)
@click.option('--resolution', 'resolution',      help='Set as None by default, which means default resolution of the diffusion model', metavar='INT',      type=int, default=None, show_default=True)
@click.option('--custom_seed',             help='Enable custom seed', metavar='BOOL',                     type=bool, default=False, show_default=True)


def main(outdir, subdirs, seeds, max_batch_size, num_fid_samples, text_prompts,repo_id,device=torch.device('cuda'),use_fp16=True,use_bf16=False,enable_compress_npz=False,num_steps_eval=25,guidance_scale=7.5,resolution=None,custom_seed=False):
    
    dist.init()
    
    dtype=torch.float16 if use_fp16 else torch.float32
    dtype=torch.bfloat16 if use_bf16 else dtype
        
    captions = read_file_to_sentences(text_prompts)

    num_batches = ((len(seeds) - 1) // (max_batch_size * dist.get_world_size()) + 1) * dist.get_world_size()
    if not custom_seed:
        all_batches = torch.as_tensor(seeds).tensor_split(num_batches)
    else:
        seeds_idx = parse_int_list(f'0-{len(seeds)-1}')
        all_batches = torch.as_tensor(seeds_idx).tensor_split(num_batches)
    rank_batches = all_batches[dist.get_rank() :: dist.get_world_size()]
    
    # Rank 0 goes first.
    if dist.get_rank() != 0:
        torch.distributed.barrier()

    # Evaluate
    if use_fp16:
        pipeline = AutoPipelineForText2Image.from_pretrained(repo_id, variant='fp16').to(device, dtype)
    else:
        pipeline = AutoPipelineForText2Image.from_pretrained(repo_id).to(device, dtype)
    _ = LinFusion.construct_for(pipeline)
    resolution = resolution or pipeline.default_sample_size * pipeline.vae_scale_factor
    
    # Other ranks follow.
    if dist.get_rank() == 0:
        torch.distributed.barrier()
        
    # Loop over batches.
    dist.print0(f'Generating {len(seeds)} images to "{outdir}"...')
    for batch_seeds in tqdm.tqdm(rank_batches, unit='batch', disable=(dist.get_rank() != 0)):
        torch.distributed.barrier()
        batch_size = len(batch_seeds)
        if batch_size == 0:
            continue
        # Pick latents and labels.
        
        if not custom_seed:
            rnd = StackedRandomGenerator(device, batch_seeds)
        else:
            cseed= [seeds[i] for i in batch_seeds]
            rnd = StackedRandomGenerator(device, cseed)
        
        img_channels=4
        latents = rnd.randn([batch_size, img_channels, resolution // pipeline.vae_scale_factor, resolution // pipeline.vae_scale_factor], device=device, dtype=dtype)

        c = [captions[i] for i in batch_seeds]  # Index captions using list comprehension

        with torch.no_grad():
            images = pipeline(
                prompt=c,
                num_inference_steps=num_steps_eval,
                guidance_scale=guidance_scale,
                latents=latents
            ).images
            
        # Save images.
        for seed, image in zip(batch_seeds, images):
            image_dir = os.path.join(outdir, f'{seed-seed%1000:06d}') if subdirs else outdir
            os.makedirs(image_dir, exist_ok=True)
            image_path = os.path.join(image_dir, f'{seed:06d}.png')
            image.save(image_path)
    # Done.
    
    if enable_compress_npz:
        torch.distributed.barrier()
        if dist.get_rank() == 0:
            compress_to_npz(outdir, num_fid_samples)
        torch.distributed.barrier()
    dist.print0('Done.')
    
#----------------------------------------------------------------------------

if __name__ == "__main__":
    main()

#----------------------------------------------------------------------------