calculate_metrics.py 6.07 KB
Newer Older
luopl's avatar
init  
luopl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# GigaGAN: https://github.com/mingukkang/GigaGAN
# The MIT License (MIT)
# See license file or visit https://github.com/mingukkang/GigaGAN for details

# evaluation.py


import os
import torch
import numpy as np

from pathlib import Path
from tqdm import tqdm
from PIL import Image
import torch.nn.functional as F
from torch.utils.data import DataLoader

from .data_util import EvalDataset, CenterCropLongEdge



def tensor2pil(image: torch.Tensor):
    ''' output image : tensor to PIL
    '''
    if isinstance(image, list) or image.ndim == 4:
        return [tensor2pil(im) for im in image]

    assert image.ndim == 3
    output_image = Image.fromarray(((image + 1.0) * 127.5).clamp(
        0.0, 255.0).to(torch.uint8).permute(1, 2, 0).detach().cpu().numpy())
    return output_image


@torch.no_grad()
def compute_clip_score(
    dataset: DataLoader, clip_model="ViT-B/32", device="cuda", how_many=5000):
    print("Computing CLIP score")
    import clip as openai_clip 
    if clip_model == "ViT-B/32":
        clip, clip_preprocessor = openai_clip.load("ViT-B/32", device=device)
        clip = clip.eval()
    elif clip_model == "ViT-G/14":
        import open_clip
        clip, _, clip_preprocessor = open_clip.create_model_and_transforms("ViT-g-14", pretrained="laion2b_s12b_b42k")
        clip = clip.to(device)
        clip = clip.eval()
        clip = clip.float()
    else:
        raise NotImplementedError

    cos_sims = []
    count = 0
    for imgs, txts in tqdm(dataset):
        imgs_pil = [clip_preprocessor(tensor2pil(img)) for img in imgs]
        imgs = torch.stack(imgs_pil, dim=0).to(device)
        tokens = openai_clip.tokenize(txts, truncate=True).to(device)
        # Prepending text prompts with "A photo depicts "
        # https://arxiv.org/abs/2104.08718
        prepend_text = "A photo depicts "
        prepend_text_token = openai_clip.tokenize(prepend_text)[:, 1:4].to(device)
        prepend_text_tokens = prepend_text_token.expand(tokens.shape[0], -1)
        
        start_tokens = tokens[:, :1]
        new_text_tokens = torch.cat(
            [start_tokens, prepend_text_tokens, tokens[:, 1:]], dim=1)[:, :77]
        last_cols = new_text_tokens[:, 77 - 1:77]
        last_cols[last_cols > 0] = 49407  # eot token
        new_text_tokens = torch.cat([new_text_tokens[:, :76], last_cols], dim=1)
        
        img_embs = clip.encode_image(imgs)
        text_embs = clip.encode_text(new_text_tokens)

        similarities = F.cosine_similarity(img_embs, text_embs, dim=1)
        cos_sims.append(similarities)
        count += similarities.shape[0]
        if count >= how_many:
            break
    
    clip_score = torch.cat(cos_sims, dim=0)[:how_many].mean()
    clip_score = clip_score.detach().cpu().numpy()
    return clip_score


@torch.no_grad()
def compute_fid(fake_dir: Path, gt_dir: Path,
    resize_size=None, feature_extractor="clip"):
    from cleanfid import fid
    center_crop_trsf = CenterCropLongEdge()
    def resize_and_center_crop(image_np):
        image_pil = Image.fromarray(image_np) 
        image_pil = center_crop_trsf(image_pil)

        if resize_size is not None:
            image_pil = image_pil.resize((resize_size, resize_size),
                                         Image.LANCZOS)
        return np.array(image_pil)

    if feature_extractor == "inception":
        model_name = "inception_v3"
    elif feature_extractor == "clip":
        model_name = "clip_vit_b_32"
    else:
        raise ValueError(
            "Unrecognized feature extractor [%s]" % feature_extractor)
    fid = fid.compute_fid(gt_dir,
                          fake_dir,
                          model_name=model_name,
                          custom_image_tranform=resize_and_center_crop)
    return fid


def evaluate_model(opt):
    ### Generated images
    ref_sub_folder_name = "val2014" if opt.ref_data == "coco2014" else opt.ref_type
    fid = compute_fid(
        os.path.join(opt.ref_dir, ref_sub_folder_name),
        opt.fake_dir,
        resize_size=opt.eval_res,
        feature_extractor="inception")
    print(f"FID_{opt.eval_res}px: {fid}")

    dset2 = EvalDataset(data_name=opt.ref_data,
                        data_dir=opt.fake_dir,
                        captionfile=opt.caption_file,
                        crop_long_edge=True,
                        resize_size=opt.eval_res,
                        resizer="lanczos",
                        normalize=True,
                        load_txt_from_file=True if opt.ref_data == "coco2014" else False)

    dset2_dataloader = DataLoader(dataset=dset2,
                                  batch_size=opt.batch_size,
                                  shuffle=False,
                                  pin_memory=True,
                                  drop_last=False)

    if opt.ref_data == "coco2014":
        clip_score = compute_clip_score(dset2_dataloader, clip_model=opt.clip_model4eval, how_many=opt.how_many)
        print(f"CLIP score: {clip_score}")


if __name__ == "__main__":
    import argparse 
    parser = argparse.ArgumentParser()
    parser.add_argument("--how_many", default=30000, type=int)
    parser.add_argument("--clip_model4eval", default="ViT-B/32", type=str, help="[WO, ViT-B/32, ViT-G/14]")

    parser.add_argument("--ref_data", default="coco2014", type=str, help="in [imagenet2012, coco2014, laion4k]")
    parser.add_argument("--ref_dir",
                        default="/home/COCO2014/",
                        help="location of the reference images for evaluation")
    parser.add_argument("--ref_type",
                        default="train/valid/test", 
                        help="Type of reference dataset")
    parser.add_argument("--fake_dir",
                        default="/home/GigaGAN_images/",
                        help="location of fake images for evaluation")
    parser.add_argument("--caption_file",
                        default="assets/captions.txt",
                        help="location of txt file containing image captions")
    parser.add_argument("--eval_res", default=256, type=int)
    parser.add_argument("--batch_size", default=8, type=int)
    
    opt, _ = parser.parse_known_args()
    evaluate_model(opt)