"official/projects/basnet/tasks/basnet.py" did not exist on "dcdd2e4015b1c2cccc8e1345f9dc3f42df65d667"
sample_t2v.py 8.96 KB
Newer Older
mashun1's avatar
latte  
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import os
import torch
import argparse
import torchvision


from diffusers.schedulers import (DDIMScheduler, DDPMScheduler, PNDMScheduler, 
                                  EulerDiscreteScheduler, DPMSolverMultistepScheduler, 
                                  HeunDiscreteScheduler, EulerAncestralDiscreteScheduler,
                                  DEISMultistepScheduler, KDPM2AncestralDiscreteScheduler)
from diffusers.schedulers.scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler
from diffusers.models import AutoencoderKL
from omegaconf import OmegaConf
from transformers import T5EncoderModel, T5Tokenizer

import os, sys
sys.path.append(os.path.split(sys.path[0])[0])
from download import find_model
from pipeline_videogen import VideoGenPipeline
from models import get_models
from utils import save_video_grid
import imageio
from copy import deepcopy

def main(args):
    # torch.manual_seed(args.seed)
    torch.set_grad_enabled(False)
    device = "cuda" if torch.cuda.is_available() else "cpu"

    transformer_model = get_models(args).to(device, dtype=torch.float16)
    state_dict = find_model(args.ckpt)
    transformer_model.load_state_dict(state_dict)

    vae = AutoencoderKL.from_pretrained(args.pretrained_model_path, subfolder="vae", torch_dtype=torch.float16).to(device)
    tokenizer = T5Tokenizer.from_pretrained(args.pretrained_model_path, subfolder="tokenizer")
    text_encoder = T5EncoderModel.from_pretrained(args.pretrained_model_path, subfolder="text_encoder", torch_dtype=torch.float16).to(device)

    # set eval mode
    transformer_model.eval()
    vae.eval()
    text_encoder.eval()

    if args.sample_method == 'DDIM':
        scheduler = DDIMScheduler.from_pretrained(args.pretrained_model_path, 
                                                  subfolder="scheduler",
                                                  beta_start=args.beta_start, 
                                                  beta_end=args.beta_end, 
                                                  beta_schedule=args.beta_schedule,
                                                  variance_type=args.variance_type)
    elif args.sample_method == 'EulerDiscrete':
        scheduler = EulerDiscreteScheduler.from_pretrained(args.pretrained_model_path, 
                                                        subfolder="scheduler",
                                                        beta_start=args.beta_start, 
                                                        beta_end=args.beta_end, 
                                                        beta_schedule=args.beta_schedule,
                                                        variance_type=args.variance_type)
    elif args.sample_method == 'DDPM':
        scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_path, 
                                                  subfolder="scheduler",
                                                  beta_start=args.beta_start, 
                                                  beta_end=args.beta_end, 
                                                  beta_schedule=args.beta_schedule,
                                                  variance_type=args.variance_type)
    elif args.sample_method == 'DPMSolverMultistep':
        scheduler = DPMSolverMultistepScheduler.from_pretrained(args.pretrained_model_path, 
                                                  subfolder="scheduler",
                                                  beta_start=args.beta_start, 
                                                  beta_end=args.beta_end, 
                                                  beta_schedule=args.beta_schedule,
                                                  variance_type=args.variance_type)
    elif args.sample_method == 'DPMSolverSinglestep':
        scheduler = DPMSolverSinglestepScheduler.from_pretrained(args.pretrained_model_path, 
                                                  subfolder="scheduler",
                                                  beta_start=args.beta_start, 
                                                  beta_end=args.beta_end, 
                                                  beta_schedule=args.beta_schedule,
                                                  variance_type=args.variance_type)
    elif args.sample_method == 'PNDM':
        scheduler = PNDMScheduler.from_pretrained(args.pretrained_model_path, 
                                                  subfolder="scheduler",
                                                  beta_start=args.beta_start, 
                                                  beta_end=args.beta_end, 
                                                  beta_schedule=args.beta_schedule,
                                                  variance_type=args.variance_type)
    elif args.sample_method == 'HeunDiscrete':
        scheduler = HeunDiscreteScheduler.from_pretrained(args.pretrained_model_path, 
                                                  subfolder="scheduler",
                                                  beta_start=args.beta_start, 
                                                  beta_end=args.beta_end, 
                                                  beta_schedule=args.beta_schedule,
                                                  variance_type=args.variance_type)
    elif args.sample_method == 'EulerAncestralDiscrete':
        scheduler = EulerAncestralDiscreteScheduler.from_pretrained(args.pretrained_model_path, 
                                                  subfolder="scheduler",
                                                  beta_start=args.beta_start, 
                                                  beta_end=args.beta_end, 
                                                  beta_schedule=args.beta_schedule,
                                                  variance_type=args.variance_type)
    elif args.sample_method == 'DEISMultistep':
        scheduler = DEISMultistepScheduler.from_pretrained(args.pretrained_model_path, 
                                                  subfolder="scheduler",
                                                  beta_start=args.beta_start, 
                                                  beta_end=args.beta_end, 
                                                  beta_schedule=args.beta_schedule,
                                                  variance_type=args.variance_type)
    elif args.sample_method == 'KDPM2AncestralDiscrete':
        scheduler = KDPM2AncestralDiscreteScheduler.from_pretrained(args.pretrained_model_path, 
                                                  subfolder="scheduler",
                                                  beta_start=args.beta_start, 
                                                  beta_end=args.beta_end, 
                                                  beta_schedule=args.beta_schedule,
                                                  variance_type=args.variance_type)


    videogen_pipeline = VideoGenPipeline(vae=vae, 
                                 text_encoder=text_encoder, 
                                 tokenizer=tokenizer, 
                                 scheduler=scheduler, 
                                 transformer=transformer_model).to(device)
    # videogen_pipeline.enable_xformers_memory_efficient_attention()

    if not os.path.exists(args.save_img_path):
        os.makedirs(args.save_img_path)

    video_grids = []
    for prompt in args.text_prompt:
        print('Processing the ({}) prompt'.format(prompt))
        videos = videogen_pipeline(prompt, 
                                video_length=args.video_length, 
                                height=args.image_size[0], 
                                width=args.image_size[1], 
                                num_inference_steps=args.num_sampling_steps,
                                guidance_scale=args.guidance_scale,
                                enable_temporal_attentions=args.enable_temporal_attentions,
                                num_images_per_prompt=1,
                                mask_feature=True,
                                ).video
        print(videos.shape)
        try:
            imageio.mimwrite(args.save_img_path + prompt.replace(' ', '_') + '_%04d' % args.run_time + 'webv-imageio.mp4', videos[0], fps=8, quality=9) # highest quality is 10, lowest is 0
        except:
            print('Error when saving {}'.format(prompt))
        video_grids.append(videos)
    video_grids = torch.cat(video_grids, dim=0)
    print(video_grids.shape)

    video_grids = save_video_grid(video_grids)

    # torchvision.io.write_video(args.save_img_path + '_%04d' % args.run_time + '-.mp4', video_grids, fps=6)
    imageio.mimwrite(args.save_img_path + '_%04d' % args.run_time + '-.mp4', video_grids, fps=8, quality=5)
    print('save path {}'.format(args.save_img_path))

    # save_videos_grid(video, f"./{prompt}.gif")

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--config", type=str, default="./configs/wbv10m_train.yaml")
    args = parser.parse_args()

    main(OmegaConf.load(args.config))