utils.py 21.8 KB
Newer Older
yongshk's avatar
yongshk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
#! /usr/bin/python
# -*- coding: utf8 -*-
import tensorflow as tf
import tensorlayer as tl
from . import iterate
import numpy as np
import time
import math
import random


def fit(sess, network, train_op, cost, X_train, y_train, x, y_, acc=None, batch_size=100,
        n_epoch=100, print_freq=5, X_val=None, y_val=None, eval_train=True,
        tensorboard=False, tensorboard_epoch_freq=5, tensorboard_weight_histograms=True, tensorboard_graph_vis=True):
    """Traing a given non time-series network by the given cost function, training data, batch_size, n_epoch etc.

    Parameters
    ----------
    sess : TensorFlow session
        sess = tf.InteractiveSession()
    network : a TensorLayer layer
        the network will be trained
    train_op : a TensorFlow optimizer
        like tf.train.AdamOptimizer
    X_train : numpy array
        the input of training data
    y_train : numpy array
        the target of training data
    x : placeholder
        for inputs
    y_ : placeholder
        for targets
    acc : the TensorFlow expression of accuracy (or other metric) or None
        if None, would not display the metric
    batch_size : int
        batch size for training and evaluating
    n_epoch : int
        the number of training epochs
    print_freq : int
        display the training information every ``print_freq`` epochs
    X_val : numpy array or None
        the input of validation data
    y_val : numpy array or None
        the target of validation data
    eval_train : boolean
        if X_val and y_val are not None, it refects whether to evaluate the training data
    tensorboard : boolean
        if True summary data will be stored to the log/ direcory for visualization with tensorboard.
        See also detailed tensorboard_X settings for specific configurations of features. (default False)
        Also runs tl.layers.initialize_global_variables(sess) internally in fit() to setup the summary nodes, see Note:
    tensorboard_epoch_freq : int
        how many epochs between storing tensorboard checkpoint for visualization to log/ directory (default 5)
    tensorboard_weight_histograms : boolean
        if True updates tensorboard data in the logs/ directory for visulaization
        of the weight histograms every tensorboard_epoch_freq epoch (default True)
    tensorboard_graph_vis : boolean
        if True stores the graph in the tensorboard summaries saved to log/ (default True)

    Examples
    --------
    >>> see tutorial_mnist_simple.py
    >>> tl.utils.fit(sess, network, train_op, cost, X_train, y_train, x, y_,
    ...            acc=acc, batch_size=500, n_epoch=200, print_freq=5,
    ...            X_val=X_val, y_val=y_val, eval_train=False)
    >>> tl.utils.fit(sess, network, train_op, cost, X_train, y_train, x, y_,
    ...            acc=acc, batch_size=500, n_epoch=200, print_freq=5,
    ...            X_val=X_val, y_val=y_val, eval_train=False,
    ...            tensorboard=True, tensorboard_weight_histograms=True, tensorboard_graph_vis=True)

    Note
    --------
        If tensorboard=True, the global_variables_initializer will be run inside the fit function
        in order to initalize the automatically generated summary nodes used for tensorboard visualization,
        thus tf.global_variables_initializer().run() before the fit() call will be undefined.
    """
    assert X_train.shape[0] >= batch_size, "Number of training examples should be bigger than the batch size"

    if(tensorboard):
        print("Setting up tensorboard ...")
        #Set up tensorboard summaries and saver
        tl.files.exists_or_mkdir('logs/')

        #Only write summaries for more recent TensorFlow versions
        if hasattr(tf, 'summary') and hasattr(tf.summary, 'FileWriter'):
            if tensorboard_graph_vis:
                train_writer = tf.summary.FileWriter('logs/train',sess.graph)
                val_writer = tf.summary.FileWriter('logs/validation',sess.graph)
            else:
                train_writer = tf.summary.FileWriter('logs/train')
                val_writer = tf.summary.FileWriter('logs/validation')

        #Set up summary nodes
        if(tensorboard_weight_histograms):
            for param in network.all_params:
                if hasattr(tf, 'summary') and hasattr(tf.summary, 'histogram'):
                    print('Param name ', param.name)
                    tf.summary.histogram(param.name, param)

        if hasattr(tf, 'summary') and hasattr(tf.summary, 'histogram'):
            tf.summary.scalar('cost', cost)

        merged = tf.summary.merge_all()

        #Initalize all variables and summaries
        tl.layers.initialize_global_variables(sess)
        print("Finished! use $tensorboard --logdir=logs/ to start server")

    print("Start training the network ...")
    start_time_begin = time.time()
    tensorboard_train_index, tensorboard_val_index = 0, 0
    for epoch in range(n_epoch):
        start_time = time.time()
        loss_ep = 0; n_step = 0
        for X_train_a, y_train_a in iterate.minibatches(X_train, y_train,
                                                    batch_size, shuffle=True):
            feed_dict = {x: X_train_a, y_: y_train_a}
            feed_dict.update( network.all_drop )    # enable noise layers
            loss, _ = sess.run([cost, train_op], feed_dict=feed_dict)
            loss_ep += loss
            n_step += 1
        loss_ep = loss_ep/ n_step

        if tensorboard and hasattr(tf, 'summary'):
            if epoch+1 == 1 or (epoch+1) % tensorboard_epoch_freq == 0:
                for X_train_a, y_train_a in iterate.minibatches(
                                        X_train, y_train, batch_size, shuffle=True):
                    dp_dict = dict_to_one( network.all_drop )    # disable noise layers
                    feed_dict = {x: X_train_a, y_: y_train_a}
                    feed_dict.update(dp_dict)
                    result = sess.run(merged, feed_dict=feed_dict)
                    train_writer.add_summary(result, tensorboard_train_index)
                    tensorboard_train_index += 1
                if (X_val is not None) and (y_val is not None):                      
                        for X_val_a, y_val_a in iterate.minibatches(
                                        X_val, y_val, batch_size, shuffle=True):
                                dp_dict = dict_to_one( network.all_drop )    # disable noise layers
                                feed_dict = {x: X_val_a, y_: y_val_a}
                                feed_dict.update(dp_dict)
                                result = sess.run(merged, feed_dict=feed_dict)
                                val_writer.add_summary(result, tensorboard_val_index)
                                tensorboard_val_index += 1

        if epoch + 1 == 1 or (epoch + 1) % print_freq == 0:
            if (X_val is not None) and (y_val is not None):
                print("Epoch %d of %d took %fs" % (epoch + 1, n_epoch, time.time() - start_time))
                if eval_train is True:
                    train_loss, train_acc, n_batch = 0, 0, 0
                    for X_train_a, y_train_a in iterate.minibatches(
                                            X_train, y_train, batch_size, shuffle=True):
                        dp_dict = dict_to_one( network.all_drop )    # disable noise layers
                        feed_dict = {x: X_train_a, y_: y_train_a}
                        feed_dict.update(dp_dict)
                        if acc is not None:
                            err, ac = sess.run([cost, acc], feed_dict=feed_dict)
                            train_acc += ac
                        else:
                            err = sess.run(cost, feed_dict=feed_dict)
                        train_loss += err;  n_batch += 1
                    print("   train loss: %f" % (train_loss/ n_batch))
                    if acc is not None:
                        print("   train acc: %f" % (train_acc/ n_batch))
                val_loss, val_acc, n_batch = 0, 0, 0
                for X_val_a, y_val_a in iterate.minibatches(
                                            X_val, y_val, batch_size, shuffle=True):
                    dp_dict = dict_to_one( network.all_drop )    # disable noise layers
                    feed_dict = {x: X_val_a, y_: y_val_a}
                    feed_dict.update(dp_dict)
                    if acc is not None:
                        err, ac = sess.run([cost, acc], feed_dict=feed_dict)
                        val_acc += ac
                    else:
                        err = sess.run(cost, feed_dict=feed_dict)
                    val_loss += err; n_batch += 1
                print("   val loss: %f" % (val_loss/ n_batch))
                if acc is not None:
                    print("   val acc: %f" % (val_acc/ n_batch))
            else:
                print("Epoch %d of %d took %fs, loss %f" % (epoch + 1, n_epoch, time.time() - start_time, loss_ep))
    print("Total training time: %fs" % (time.time() - start_time_begin))


def test(sess, network, acc, X_test, y_test, x, y_, batch_size, cost=None):
    """
    Test a given non time-series network by the given test data and metric.

    Parameters
    ----------
    sess : TensorFlow session
        sess = tf.InteractiveSession()
    network : a TensorLayer layer
        the network will be trained
    acc : the TensorFlow expression of accuracy (or other metric) or None
        if None, would not display the metric
    X_test : numpy array
        the input of test data
    y_test : numpy array
        the target of test data
    x : placeholder
        for inputs
    y_ : placeholder
        for targets
    batch_size : int or None
        batch size for testing, when dataset is large, we should use minibatche for testing.
        when dataset is small, we can set it to None.
    cost : the TensorFlow expression of cost or None
        if None, would not display the cost

    Examples
    --------
    >>> see tutorial_mnist_simple.py
    >>> tl.utils.test(sess, network, acc, X_test, y_test, x, y_, batch_size=None, cost=cost)
    """
    print('Start testing the network ...')
    if batch_size is None:
        dp_dict = dict_to_one( network.all_drop )
        feed_dict = {x: X_test, y_: y_test}
        feed_dict.update(dp_dict)
        if cost is not None:
            print("   test loss: %f" % sess.run(cost, feed_dict=feed_dict))
        print("   test acc: %f" % sess.run(acc, feed_dict=feed_dict))
            # print("   test acc: %f" % np.mean(y_test == sess.run(y_op,
            #                                           feed_dict=feed_dict)))
    else:
        test_loss, test_acc, n_batch = 0, 0, 0
        for X_test_a, y_test_a in iterate.minibatches(
                                    X_test, y_test, batch_size, shuffle=True):
            dp_dict = dict_to_one( network.all_drop )    # disable noise layers
            feed_dict = {x: X_test_a, y_: y_test_a}
            feed_dict.update(dp_dict)
            if cost is not None:
                err, ac = sess.run([cost, acc], feed_dict=feed_dict)
                test_loss += err
            else:
                ac = sess.run(acc, feed_dict=feed_dict)
            test_acc += ac; n_batch += 1
        if cost is not None:
            print("   test loss: %f" % (test_loss/ n_batch))
        print("   test acc: %f" % (test_acc/ n_batch))


def predict(sess, network, X, x, y_op, batch_size=None):
    """
    Return the predict results of given non time-series network.

    Parameters
    ----------
    sess : TensorFlow session
        sess = tf.InteractiveSession()
    network : a TensorLayer layer
        the network will be trained
    X : numpy array
        the input
    x : placeholder
        for inputs
    y_op : placeholder
        the argmax expression of softmax outputs
    batch_size : int or None
        batch size for prediction, when dataset is large, we should use minibatche for prediction.
        when dataset is small, we can set it to None.

    Examples
    --------
    >>> see tutorial_mnist_simple.py
    >>> y = network.outputs
    >>> y_op = tf.argmax(tf.nn.softmax(y), 1)
    >>> print(tl.utils.predict(sess, network, X_test, x, y_op))
    """
    if batch_size is None:
        dp_dict = dict_to_one( network.all_drop )    # disable noise layers
        feed_dict = {x: X,}
        feed_dict.update(dp_dict)
        return sess.run(y_op, feed_dict=feed_dict)
    else:
        result = None
        for X_a, _ in iterate.minibatches(
                X, X, batch_size, shuffle=False):
            dp_dict = dict_to_one( network.all_drop )
            feed_dict = {x: X_a, }
            feed_dict.update(dp_dict)
            result_a = sess.run(y_op, feed_dict=feed_dict)
            if result is None:
                result = result_a
            else:
                result = np.hstack((result, result_a))
        return result


## Evaluation
def evaluation(y_test=None, y_predict=None, n_classes=None):
    """
    Input the predicted results, targets results and
    the number of class, return the confusion matrix, F1-score of each class,
    accuracy and macro F1-score.

    Parameters
    ----------
    y_test : numpy.array or list
        target results
    y_predict : numpy.array or list
        predicted results
    n_classes : int
        number of classes

    Examples
    --------
    >>> c_mat, f1, acc, f1_macro = evaluation(y_test, y_predict, n_classes)
    """
    from sklearn.metrics import confusion_matrix, f1_score, accuracy_score
    c_mat = confusion_matrix(y_test, y_predict, labels = [x for x in range(n_classes)])
    f1    = f1_score(y_test, y_predict, average = None, labels = [x for x in range(n_classes)])
    f1_macro = f1_score(y_test, y_predict, average='macro')
    acc   = accuracy_score(y_test, y_predict)
    print('confusion matrix: \n',c_mat)
    print('f1-score:',f1)
    print('f1-score(macro):',f1_macro)   # same output with > f1_score(y_true, y_pred, average='macro')
    print('accuracy-score:', acc)
    return c_mat, f1, acc, f1_macro

def dict_to_one(dp_dict={}):
    """
    Input a dictionary, return a dictionary that all items are set to one,
    use for disable dropout, dropconnect layer and so on.

    Parameters
    ----------
    dp_dict : dictionary
        keeping probabilities

    Examples
    --------
    >>> dp_dict = dict_to_one( network.all_drop )
    >>> dp_dict = dict_to_one( network.all_drop )
    >>> feed_dict.update(dp_dict)
    """
    return {x: 1 for x in dp_dict}

def flatten_list(list_of_list=[[],[]]):
    """
    Input a list of list, return a list that all items are in a list.

    Parameters
    ----------
    list_of_list : a list of list

    Examples
    --------
    >>> tl.utils.flatten_list([[1, 2, 3],[4, 5],[6]])
    ... [1, 2, 3, 4, 5, 6]
    """
    return sum(list_of_list, [])


def class_balancing_oversample(X_train=None, y_train=None, printable=True):
    """Input the features and labels, return the features and labels after oversampling.

    Parameters
    ----------
    X_train : numpy.array
        Features, each row is an example
    y_train : numpy.array
        Labels

    Examples
    --------
    - One X
    >>> X_train, y_train = class_balancing_oversample(X_train, y_train, printable=True)

    - Two X
    >>> X, y = tl.utils.class_balancing_oversample(X_train=np.hstack((X1, X2)), y_train=y, printable=False)
    >>> X1 = X[:, 0:5]
    >>> X2 = X[:, 5:]
    """
    # ======== Classes balancing
    if printable:
        print("Classes balancing for training examples...")
    from collections import Counter
    c = Counter(y_train)
    if printable:
        print('the occurrence number of each stage: %s' % c.most_common())
        print('the least stage is Label %s have %s instances' % c.most_common()[-1])
        print('the most stage is  Label %s have %s instances' % c.most_common(1)[0])
    most_num = c.most_common(1)[0][1]
    if printable:
        print('most num is %d, all classes tend to be this num' % most_num)

    locations = {}
    number = {}

    for lab, num in c.most_common():    # find the index from y_train
        number[lab] = num
        locations[lab] = np.where(np.array(y_train)==lab)[0]
    if printable:
        print('convert list(np.array) to dict format')
    X = {}  # convert list to dict
    for lab, num in number.items():
        X[lab] = X_train[locations[lab]]

    # oversampling
    if printable:
        print('start oversampling')
    for key in X:
        temp = X[key]
        while True:
            if len(X[key]) >= most_num:
                break
            X[key] = np.vstack((X[key], temp))
    if printable:
        print('first features of label 0 >', len(X[0][0]))
        print('the occurrence num of each stage after oversampling')
    for key in X:
        print(key, len(X[key]))
    if printable:
        print('make each stage have same num of instances')
    for key in X:
        X[key] = X[key][0:most_num,:]
        print(key, len(X[key]))

    # convert dict to list
    if printable:
        print('convert from dict to list format')
    y_train = []
    X_train = np.empty(shape=(0,len(X[0][0])))
    for key in X:
        X_train = np.vstack( (X_train, X[key] ) )
        y_train.extend([key for i in range(len(X[key]))])
    # print(len(X_train), len(y_train))
    c = Counter(y_train)
    if printable:
        print('the occurrence number of each stage after oversampling: %s' % c.most_common())
    # ================ End of Classes balancing
    return X_train, y_train

## Random
def get_random_int(min=0, max=10, number=5, seed=None):
    """Return a list of random integer by the given range and quantity.

    Examples
    ---------
    >>> r = get_random_int(min=0, max=10, number=5)
    ... [10, 2, 3, 3, 7]
    """
    rnd = random.Random()
    if seed:
        rnd = random.Random(seed)
    # return [random.randint(min,max) for p in range(0, number)]
    return [rnd.randint(min,max) for p in range(0, number)]

#
# def class_balancing_sequence_4D(X_train, y_train, sequence_length, model='downsampling' ,printable=True):
#     ''' 输入、输出都是sequence format
#         oversampling or downsampling
#     '''
#     n_features = X_train.shape[2]
#     # ======== Classes balancing for sequence
#     if printable:
#         print("Classes balancing for 4D sequence training examples...")
#     from collections import Counter
#     c = Counter(y_train)    # Counter({2: 454, 4: 267, 3: 124, 1: 57, 0: 48})
#     if printable:
#         print('the occurrence number of each stage: %s' % c.most_common())
#         print('the least Label %s have %s instances' % c.most_common()[-1])
#         print('the most  Label %s have %s instances' % c.most_common(1)[0])
#     # print(c.most_common()) # [(2, 454), (4, 267), (3, 124), (1, 57), (0, 48)]
#     most_num = c.most_common(1)[0][1]
#     less_num = c.most_common()[-1][1]
#
#     locations = {}
#     number = {}
#     for lab, num in c.most_common():
#         number[lab] = num
#         locations[lab] = np.where(np.array(y_train)==lab)[0]
#     # print(locations)
#     # print(number)
#     if printable:
#         print('  convert list to dict')
#     X = {}  # convert list to dict
#     ### a sequence
#     for lab, _ in number.items():
#         X[lab] = np.empty(shape=(0,1,n_features,1)) # 4D
#     for lab, _ in number.items():
#         #X[lab] = X_train[locations[lab]
#         for l in locations[lab]:
#             X[lab] = np.vstack((X[lab], X_train[l*sequence_length : (l+1)*(sequence_length)]))
#         # X[lab] = X_train[locations[lab]*sequence_length : locations[lab]*(sequence_length+1)]    # a sequence
#     # print(X)
#
#     if model=='oversampling':
#         if printable:
#             print('  oversampling -- most num is %d, all classes tend to be this num\nshuffle applied' % most_num)
#         for key in X:
#             temp = X[key]
#             while True:
#                 if len(X[key]) >= most_num * sequence_length:   # sequence
#                     break
#                 X[key] = np.vstack((X[key], temp))
#             # print(key, len(X[key]))
#         if printable:
#             print('  make each stage have same num of instances')
#         for key in X:
#             X[key] = X[key][0:most_num*sequence_length,:]   # sequence
#             if printable:
#                 print(key, len(X[key]))
#     elif model=='downsampling':
#         import random
#         if printable:
#             print('  downsampling -- less num is %d, all classes tend to be this num by randomly choice without replacement\nshuffle applied' % less_num)
#         for key in X:
#             # print(key, len(X[key]))#, len(X[key])/sequence_length)
#             s_idx = [ i for i in range(int(len(X[key])/sequence_length))]
#             s_idx = np.asarray(s_idx)*sequence_length   # start index of sequnce in X[key]
#             # print('s_idx',s_idx)
#             r_idx = np.random.choice(s_idx, less_num, replace=False)    # random choice less_num of s_idx
#             # print('r_idx',r_idx)
#             temp = X[key]
#             X[key] = np.empty(shape=(0,1,n_features,1)) # 4D
#             for idx in r_idx:
#                 X[key] = np.vstack((X[key], temp[idx:idx+sequence_length]))
#             # print(key, X[key])
#             # np.random.choice(l, len(l), replace=False)
#     else:
#         raise Exception('  model should be oversampling or downsampling')
#
#     # convert dict to list
#     if printable:
#         print('  convert dict to list')
#     y_train = []
#     # X_train = np.empty(shape=(0,len(X[0][0])))
#     # X_train = np.empty(shape=(0,len(X[1][0])))    # 2D
#     X_train = np.empty(shape=(0,1,n_features,1))    # 4D
#     l_key = list(X.keys())  # shuffle
#     random.shuffle(l_key)   # shuffle
#     # for key in X:     # no shuffle
#     for key in l_key:   # shuffle
#         X_train = np.vstack( (X_train, X[key] ) )
#         # print(len(X[key]))
#         y_train.extend([key for i in range(int(len(X[key])/sequence_length))])
#     # print(X_train,y_train, type(X_train), type(y_train))
#     # ================ End of Classes balancing for sequence
#     # print(X_train.shape, len(y_train))
#     return X_train, np.asarray(y_train)