cost.py 22.3 KB
Newer Older
yongshk's avatar
yongshk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
#! /usr/bin/python
# -*- coding: utf8 -*-



import tensorflow as tf
import numbers
from tensorflow.python.framework import ops
from tensorflow.python.ops import standard_ops

## Cost Functions

def cross_entropy(output, target, name=None):
    """It is a softmax cross-entropy operation, returns the TensorFlow expression of cross-entropy of two distributions, implement
    softmax internally. See ``tf.nn.sparse_softmax_cross_entropy_with_logits``.

    Parameters
    ----------
    output : Tensorflow variable
        A distribution with shape: [batch_size, n_feature].
    target : Tensorflow variable
        A batch of index with shape: [batch_size, ].
    name : string
        Name of this loss.

    Examples
    --------
    >>> ce = tl.cost.cross_entropy(y_logits, y_target_logits, 'my_loss')

    References
    -----------
    - About cross-entropy: `wiki <https://en.wikipedia.org/wiki/Cross_entropy>`_.\n
    - The code is borrowed from: `here <https://en.wikipedia.org/wiki/Cross_entropy>`_.
    """
    try: # old
        return tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=output, targets=target))
    except: # TF 1.0
        assert name is not None, "Please give a unique name to tl.cost.cross_entropy for TF1.0+"
        return tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=target, logits=output, name=name))

def sigmoid_cross_entropy(output, target, name=None):
    """It is a sigmoid cross-entropy operation, see ``tf.nn.sigmoid_cross_entropy_with_logits``.
    """
    try: # TF 1.0
        return tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=target, logits=output, name=name))
    except:
        return tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=output, targets=target))


def binary_cross_entropy(output, target, epsilon=1e-8, name='bce_loss'):
    """Computes binary cross entropy given `output`.

    For brevity, let `x = output`, `z = target`.  The binary cross entropy loss is

        loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i]))

    Parameters
    ----------
    output : tensor of type `float32` or `float64`.
    target : tensor of the same type and shape as `output`.
    epsilon : float
        A small value to avoid output is zero.
    name : string
        An optional name to attach to this layer.

    References
    -----------
    - `DRAW <https://github.com/ericjang/draw/blob/master/draw.py#L73>`_
    """
#     from tensorflow.python.framework import ops
#     with ops.op_scope([output, target], name, "bce_loss") as name:
#         output = ops.convert_to_tensor(output, name="preds")
#         target = ops.convert_to_tensor(targets, name="target")
    with tf.name_scope(name):
        return tf.reduce_mean(tf.reduce_sum(-(target * tf.log(output + epsilon) +
                              (1. - target) * tf.log(1. - output + epsilon)), axis=1))


def mean_squared_error(output, target, is_mean=False):
    """Return the TensorFlow expression of mean-squre-error of two distributions.

    Parameters
    ----------
    output : 2D or 4D tensor.
    target : 2D or 4D tensor.
    is_mean : boolean, if True, use ``tf.reduce_mean`` to compute the loss of one data, otherwise, use ``tf.reduce_sum`` (default).

    References
    ------------
    - `Wiki Mean Squared Error <https://en.wikipedia.org/wiki/Mean_squared_error>`_
    """
    with tf.name_scope("mean_squared_error_loss"):
        if output.get_shape().ndims == 2:   # [batch_size, n_feature]
            if is_mean:
                mse = tf.reduce_mean(tf.reduce_mean(tf.squared_difference(output, target), 1))
            else:
                mse = tf.reduce_mean(tf.reduce_sum(tf.squared_difference(output, target), 1))
        elif output.get_shape().ndims == 4: # [batch_size, w, h, c]
            if is_mean:
                mse = tf.reduce_mean(tf.reduce_mean(tf.squared_difference(output, target), [1, 2, 3]))
            else:
                mse = tf.reduce_mean(tf.reduce_sum(tf.squared_difference(output, target), [1, 2, 3]))
        return mse

def normalized_mean_square_error(output, target):
    """Return the TensorFlow expression of normalized mean-squre-error of two distributions.

    Parameters
    ----------
    output : 2D or 4D tensor.
    target : 2D or 4D tensor.
    """
    with tf.name_scope("mean_squared_error_loss"):
        if output.get_shape().ndims == 2:   # [batch_size, n_feature]
            nmse_a = tf.sqrt(tf.reduce_sum(tf.squared_difference(output, target), axis=1))
            nmse_b = tf.sqrt(tf.reduce_sum(tf.square(target), axis=1))
        elif output.get_shape().ndims == 4: # [batch_size, w, h, c]
            nmse_a = tf.sqrt(tf.reduce_sum(tf.squared_difference(output, target), axis=[1,2,3]))
            nmse_b = tf.sqrt(tf.reduce_sum(tf.square(target), axis=[1,2,3]))
        nmse = tf.reduce_mean(nmse_a / nmse_b)
    return nmse


def dice_coe(output, target, epsilon=1e-10):
    """Sørensen–Dice coefficient for comparing the similarity of two distributions,
    usually be used for binary image segmentation i.e. labels are binary.
    The coefficient = [0, 1], 1 if totally match.

    Parameters
    -----------
    output : tensor
        A distribution with shape: [batch_size, ....], (any dimensions).
    target : tensor
        A distribution with shape: [batch_size, ....], (any dimensions).
    epsilon : float
        An optional name to attach to this layer.

    Examples
    ---------
    >>> outputs = tl.act.pixel_wise_softmax(network.outputs)
    >>> dice_loss = 1 - tl.cost.dice_coe(outputs, y_, epsilon=1e-5)

    References
    -----------
    - `wiki-dice <https://en.wikipedia.org/wiki/Sørensen–Dice_coefficient>`_
    """
    # inse = tf.reduce_sum( tf.mul(output, target) )
    # l = tf.reduce_sum( tf.mul(output, output) )
    # r = tf.reduce_sum( tf.mul(target, target) )
    inse = tf.reduce_sum( output * target )
    l = tf.reduce_sum( output * output )
    r = tf.reduce_sum( target * target )
    dice = 2 * (inse) / (l + r)
    if epsilon == 0:
        return dice
    else:
        return tf.clip_by_value(dice, 0, 1.0-epsilon)


def dice_hard_coe(output, target, epsilon=1e-10):
    """Non-differentiable Sørensen–Dice coefficient for comparing the similarity of two distributions,
    usually be used for binary image segmentation i.e. labels are binary.
    The coefficient = [0, 1], 1 if totally match.

    Parameters
    -----------
    output : tensor
        A distribution with shape: [batch_size, ....], (any dimensions).
    target : tensor
        A distribution with shape: [batch_size, ....], (any dimensions).
    epsilon : float
        An optional name to attach to this layer.

    Examples
    ---------
    >>> outputs = pixel_wise_softmax(network.outputs)
    >>> dice_loss = 1 - dice_coe(outputs, y_, epsilon=1e-5)

    References
    -----------
    - `wiki-dice <https://en.wikipedia.org/wiki/Sørensen–Dice_coefficient>`_
    """
    output = tf.cast(output > 0.5, dtype=tf.float32)
    target = tf.cast(target > 0.5, dtype=tf.float32)
    inse = tf.reduce_sum( output * target )
    l = tf.reduce_sum( output * output )
    r = tf.reduce_sum( target * target )
    dice = 2 * (inse) / (l + r)
    if epsilon == 0:
        return dice
    else:
        return tf.clip_by_value(dice, 0, 1.0-epsilon)

def iou_coe(output, target, threshold=0.5, epsilon=1e-10):
    """Non-differentiable Intersection over Union, usually be used for evaluating binary image segmentation.
    The coefficient = [0, 1], 1 means totally match.

    Parameters
    -----------
    output : tensor
        A distribution with shape: [batch_size, ....], (any dimensions).
    target : tensor
        A distribution with shape: [batch_size, ....], (any dimensions).
    threshold : float
        The threshold value to be true.
    epsilon : float
        A small value to avoid zero denominator when both output and target output nothing.

    Examples
    ---------
    >>> outputs = tl.act.pixel_wise_softmax(network.outputs)
    >>> iou = tl.cost.iou_coe(outputs[:,:,:,0], y_[:,:,:,0])

    Notes
    ------
    - IOU cannot be used as training loss, people usually use dice coefficient for training, and IOU for evaluating.
    """
    pre = tf.cast(output > threshold, dtype=tf.float32)
    truth = tf.cast(target > threshold, dtype=tf.float32)
    intersection = tf.reduce_sum(pre * truth)
    union = tf.reduce_sum(tf.cast((pre + truth) > threshold, dtype=tf.float32))
    return tf.reduce_sum(intersection) / (tf.reduce_sum(union) + epsilon)


def cross_entropy_seq(logits, target_seqs, batch_size=None):#, batch_size=1, num_steps=None):
    """Returns the expression of cross-entropy of two sequences, implement
    softmax internally. Normally be used for Fixed Length RNN outputs.

    Parameters
    ----------
    logits : Tensorflow variable
        2D tensor, ``network.outputs``, [batch_size*n_steps (n_examples), number of output units]
    target_seqs : Tensorflow variable
        target : 2D tensor [batch_size, n_steps], if the number of step is dynamic, please use ``cross_entropy_seq_with_mask`` instead.
    batch_size : None or int.
        If not None, the return cost will be divided by batch_size.

    Examples
    --------
    >>> see PTB tutorial for more details
    >>> input_data = tf.placeholder(tf.int32, [batch_size, num_steps])
    >>> targets = tf.placeholder(tf.int32, [batch_size, num_steps])
    >>> cost = tl.cost.cross_entropy_seq(network.outputs, targets)
    """
    try: # TF 1.0
        sequence_loss_by_example_fn = tf.contrib.legacy_seq2seq.sequence_loss_by_example
    except:
        sequence_loss_by_example_fn = tf.nn.seq2seq.sequence_loss_by_example

    loss = sequence_loss_by_example_fn(
        [logits],
        [tf.reshape(target_seqs, [-1])],
        [tf.ones_like(tf.reshape(target_seqs, [-1]), dtype=tf.float32)])
        # [tf.ones([batch_size * num_steps])])
    cost = tf.reduce_sum(loss) #/ batch_size
    if batch_size is not None:
        cost = cost / batch_size
    return cost


def cross_entropy_seq_with_mask(logits, target_seqs, input_mask, return_details=False, name=None):
    """Returns the expression of cross-entropy of two sequences, implement
    softmax internally. Normally be used for Dynamic RNN outputs.

    Parameters
    -----------
    logits : network identity outputs
        2D tensor, ``network.outputs``, [batch_size, number of output units].
    target_seqs : int of tensor, like word ID.
        [batch_size, ?]
    input_mask : the mask to compute loss
        The same size with target_seqs, normally 0 and 1.
    return_details : boolean
        - If False (default), only returns the loss.
        - If True, returns the loss, losses, weights and targets (reshape to one vetcor).

    Examples
    --------
    - see Image Captioning Example.
    """
    targets = tf.reshape(target_seqs, [-1])   # to one vector
    weights = tf.to_float(tf.reshape(input_mask, [-1]))   # to one vector like targets
    losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=targets, name=name) * weights
    #losses = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=targets, name=name)) # for TF1.0 and others

    try: ## TF1.0
        loss = tf.divide(tf.reduce_sum(losses),   # loss from mask. reduce_sum before element-wise mul with mask !!
                        tf.reduce_sum(weights),
                        name="seq_loss_with_mask")
    except: ## TF0.12
        loss = tf.div(tf.reduce_sum(losses),   # loss from mask. reduce_sum before element-wise mul with mask !!
                        tf.reduce_sum(weights),
                        name="seq_loss_with_mask")
    if return_details:
        return loss, losses, weights, targets
    else:
        return loss


def cosine_similarity(v1, v2):
    """Cosine similarity [-1, 1], `wiki <https://en.wikipedia.org/wiki/Cosine_similarity>`_.

    Parameters
    -----------
    v1, v2 : tensor of [batch_size, n_feature], with the same number of features.

    Returns
    -----------
    a tensor of [batch_size, ]
    """
    try: ## TF1.0
        cost = tf.reduce_sum(tf.multiply(v1, v2), 1) / (tf.sqrt(tf.reduce_sum(tf.multiply(v1, v1), 1)) * tf.sqrt(tf.reduce_sum(tf.multiply(v2, v2), 1)))
    except: ## TF0.12
        cost = tf.reduce_sum(tf.mul(v1, v2), reduction_indices=1) / (tf.sqrt(tf.reduce_sum(tf.mul(v1, v1), reduction_indices=1)) * tf.sqrt(tf.reduce_sum(tf.mul(v2, v2), reduction_indices=1)))
    return cost


## Regularization Functions
def li_regularizer(scale, scope=None):
  """li regularization removes the neurons of previous layer, `i` represents `inputs`.\n
  Returns a function that can be used to apply group li regularization to weights.\n
  The implementation follows `TensorFlow contrib <https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/layers/python/layers/regularizers.py>`_.

  Parameters
  ----------
  scale : float
    A scalar multiplier `Tensor`. 0.0 disables the regularizer.
  scope: An optional scope name for TF12+.

  Returns
  --------
  A function with signature `li(weights, name=None)` that apply Li regularization.

  Raises
  ------
  ValueError : if scale is outside of the range [0.0, 1.0] or if scale is not a float.
  """
  import numbers
  from tensorflow.python.framework import ops
  from tensorflow.python.ops import standard_ops
  # from tensorflow.python.platform import tf_logging as logging

  if isinstance(scale, numbers.Integral):
    raise ValueError('scale cannot be an integer: %s' % scale)
  if isinstance(scale, numbers.Real):
    if scale < 0.:
      raise ValueError('Setting a scale less than 0 on a regularizer: %g' %
                       scale)
    if scale >= 1.:
      raise ValueError('Setting a scale greater than 1 on a regularizer: %g' %
                       scale)
    if scale == 0.:
      logging.info('Scale of 0 disables regularizer.')
      return lambda _, name=None: None

  def li(weights, name=None):
    """Applies li regularization to weights."""
    with tf.name_scope('li_regularizer') as scope:
        my_scale = ops.convert_to_tensor(scale,
                                           dtype=weights.dtype.base_dtype,
                                           name='scale')
        if tf.__version__ <= '0.12':
            standard_ops_fn = standard_ops.mul
        else:
            standard_ops_fn = standard_ops.multiply
            return standard_ops_fn(
              my_scale,
              standard_ops.reduce_sum(standard_ops.sqrt(standard_ops.reduce_sum(tf.square(weights), 1))),
              name=scope)
  return li



def lo_regularizer(scale, scope=None):
  """lo regularization removes the neurons of current layer, `o` represents `outputs`\n
  Returns a function that can be used to apply group lo regularization to weights.\n
  The implementation follows `TensorFlow contrib <https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/layers/python/layers/regularizers.py>`_.

  Parameters
  ----------
  scale : float
    A scalar multiplier `Tensor`. 0.0 disables the regularizer.
  scope: An optional scope name for TF12+.

  Returns
  -------
  A function with signature `lo(weights, name=None)` that apply Lo regularization.

  Raises
  ------
  ValueError : If scale is outside of the range [0.0, 1.0] or if scale is not a float.
  """
  import numbers
  from tensorflow.python.framework import ops
  from tensorflow.python.ops import standard_ops
  # from tensorflow.python.platform import tf_logging as logging

  if isinstance(scale, numbers.Integral):
    raise ValueError('scale cannot be an integer: %s' % scale)
  if isinstance(scale, numbers.Real):
    if scale < 0.:
      raise ValueError('Setting a scale less than 0 on a regularizer: %g' %
                       scale)
    if scale >= 1.:
      raise ValueError('Setting a scale greater than 1 on a regularizer: %g' %
                       scale)
    if scale == 0.:
      logging.info('Scale of 0 disables regularizer.')
      return lambda _, name=None: None

  def lo(weights, name='lo_regularizer'):
    """Applies group column regularization to weights."""
    with tf.name_scope(name) as scope:
        my_scale = ops.convert_to_tensor(scale,
                                       dtype=weights.dtype.base_dtype,
                                       name='scale')
        if tf.__version__ <= '0.12':
            standard_ops_fn = standard_ops.mul
        else:
            standard_ops_fn = standard_ops.multiply
        return standard_ops_fn(
          my_scale,
          standard_ops.reduce_sum(standard_ops.sqrt(standard_ops.reduce_sum(tf.square(weights), 0))),
          name=scope)
  return lo

def maxnorm_regularizer(scale=1.0, scope=None):
  """Max-norm regularization returns a function that can be used
  to apply max-norm regularization to weights.
  About max-norm: `wiki <https://en.wikipedia.org/wiki/Matrix_norm#Max_norm>`_.\n
  The implementation follows `TensorFlow contrib <https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/layers/python/layers/regularizers.py>`_.

  Parameters
  ----------
  scale : float
    A scalar multiplier `Tensor`. 0.0 disables the regularizer.
  scope: An optional scope name.

  Returns
  ---------
  A function with signature `mn(weights, name=None)` that apply Lo regularization.

  Raises
  --------
  ValueError : If scale is outside of the range [0.0, 1.0] or if scale is not a float.
  """
  import numbers
  from tensorflow.python.framework import ops
  from tensorflow.python.ops import standard_ops

  if isinstance(scale, numbers.Integral):
    raise ValueError('scale cannot be an integer: %s' % scale)
  if isinstance(scale, numbers.Real):
    if scale < 0.:
      raise ValueError('Setting a scale less than 0 on a regularizer: %g' %
                       scale)
    # if scale >= 1.:
    #   raise ValueError('Setting a scale greater than 1 on a regularizer: %g' %
    #                    scale)
    if scale == 0.:
      logging.info('Scale of 0 disables regularizer.')
      return lambda _, name=None: None

  def mn(weights, name='max_regularizer'):
    """Applies max-norm regularization to weights."""
    with tf.name_scope(name) as scope:
          my_scale = ops.convert_to_tensor(scale,
                                           dtype=weights.dtype.base_dtype,
                                           name='scale')
          if tf.__version__ <= '0.12':
              standard_ops_fn = standard_ops.mul
          else:
              standard_ops_fn = standard_ops.multiply
          return standard_ops_fn(my_scale, standard_ops.reduce_max(standard_ops.abs(weights)), name=scope)
  return mn

def maxnorm_o_regularizer(scale, scope):
  """Max-norm output regularization removes the neurons of current layer.\n
  Returns a function that can be used to apply max-norm regularization to each column of weight matrix.\n
  The implementation follows `TensorFlow contrib <https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/layers/python/layers/regularizers.py>`_.

  Parameters
  ----------
  scale : float
    A scalar multiplier `Tensor`. 0.0 disables the regularizer.
  scope: An optional scope name.

  Returns
  ---------
  A function with signature `mn_o(weights, name=None)` that apply Lo regularization.

  Raises
  ---------
  ValueError : If scale is outside of the range [0.0, 1.0] or if scale is not a float.
  """
  import numbers
  from tensorflow.python.framework import ops
  from tensorflow.python.ops import standard_ops

  if isinstance(scale, numbers.Integral):
    raise ValueError('scale cannot be an integer: %s' % scale)
  if isinstance(scale, numbers.Real):
    if scale < 0.:
      raise ValueError('Setting a scale less than 0 on a regularizer: %g' %
                       scale)
    # if scale >= 1.:
    #   raise ValueError('Setting a scale greater than 1 on a regularizer: %g' %
    #                    scale)
    if scale == 0.:
      logging.info('Scale of 0 disables regularizer.')
      return lambda _, name=None: None

  def mn_o(weights, name='maxnorm_o_regularizer'):
     """Applies max-norm regularization to weights."""
     with tf.name_scope(name) as scope:
          my_scale = ops.convert_to_tensor(scale,
                                           dtype=weights.dtype.base_dtype,
                                                   name='scale')
          if tf.__version__ <= '0.12':
             standard_ops_fn = standard_ops.mul
          else:
             standard_ops_fn = standard_ops.multiply
          return standard_ops_fn(my_scale, standard_ops.reduce_sum(standard_ops.reduce_max(standard_ops.abs(weights), 0)), name=scope)
  return mn_o

def maxnorm_i_regularizer(scale, scope=None):
  """Max-norm input regularization removes the neurons of previous layer.\n
  Returns a function that can be used to apply max-norm regularization to each row of weight matrix.\n
  The implementation follows `TensorFlow contrib <https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/layers/python/layers/regularizers.py>`_.

  Parameters
  ----------
  scale : float
    A scalar multiplier `Tensor`. 0.0 disables the regularizer.
  scope: An optional scope name.

  Returns
  ---------
  A function with signature `mn_i(weights, name=None)` that apply Lo regularization.

  Raises
  ---------
  ValueError : If scale is outside of the range [0.0, 1.0] or if scale is not a float.
  """
  import numbers
  from tensorflow.python.framework import ops
  from tensorflow.python.ops import standard_ops

  if isinstance(scale, numbers.Integral):
    raise ValueError('scale cannot be an integer: %s' % scale)
  if isinstance(scale, numbers.Real):
    if scale < 0.:
      raise ValueError('Setting a scale less than 0 on a regularizer: %g' %
                       scale)
    # if scale >= 1.:
    #   raise ValueError('Setting a scale greater than 1 on a regularizer: %g' %
    #                    scale)
    if scale == 0.:
      logging.info('Scale of 0 disables regularizer.')
      return lambda _, name=None: None

  def mn_i(weights, name='maxnorm_i_regularizer'):
     """Applies max-norm regularization to weights."""
     with tf.name_scope(name) as scope:
          my_scale = ops.convert_to_tensor(scale,
                                           dtype=weights.dtype.base_dtype,
                                                   name='scale')
          if tf.__version__ <= '0.12':
             standard_ops_fn = standard_ops.mul
          else:
             standard_ops_fn = standard_ops.multiply
          return standard_ops_fn(my_scale, standard_ops.reduce_sum(standard_ops.reduce_max(standard_ops.abs(weights), 1)), name=scope)
  return mn_i





#