"src/diffusers/pipelines/consisid/pipeline_consisid.py" did not exist on "1ca0a75567da1ca5a97681310c1b57e9f527a84a"
model.py 3.05 KB
Newer Older
yongshk's avatar
yongshk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
#! /usr/bin/python
# -*- coding: utf8 -*-
import numpy as np
import tensorflow as tf
import tensorlayer as tl
from tensorlayer.layers import *

from config import *



def lrelu(x):
    return tf.maximum(x*0.2,x)



def LapSRNSingleLevel(net_image, net_feature, reuse=False):
    with tf.variable_scope("Model_level", reuse=reuse):
        tl.layers.set_name_reuse(reuse)
        
        net_tmp = net_feature
        # recursive block
        for d in range(config.model.resblock_depth):
            net_tmp = PReluLayer(net_tmp, name='prelu_D%s'%(d))
            net_tmp = Conv2dLayer(net_tmp,shape=[3,3,64,64],strides=[1,1,1,1],
                        name='conv_D%s'%(d), W_init=tf.contrib.layers.xavier_initializer())
                
        # for r in range(1,config.model.recursive_depth):
        #     for d in range(config.model.resblock_depth):
        #         net_tmp = PReluLayer(net_tmp, name='prelu_R%s_D%s'%(r,d))
        #         net_tmp = Conv2dLayer(net_tmp,shape=[3,3,64,64],strides=[1,1,1,1],
        #                 name='conv_R%s_D%s'%(r,d), W_init=tf.contrib.layers.xavier_initializer())

        net_feature = ElementwiseLayer(layer=[net_feature,net_tmp],combine_fn=tf.add,name='add_feature')

        net_feature = PReluLayer(net_feature, name='prelu_feature')
        net_feature = Conv2dLayer(net_feature,shape=[3,3,64,256],strides=[1,1,1,1],
                        name='upconv_feature', W_init=tf.contrib.layers.xavier_initializer())
        net_feature = SubpixelConv2d(net_feature,scale=2,n_out_channel=64,
                        name='subpixel_feature')

        # add image back
        gradient_level = Conv2dLayer(net_feature,shape=[3,3,64,3],strides=[1,1,1,1],act=lrelu,
                        name='grad', W_init=tf.contrib.layers.xavier_initializer())
        net_image = Conv2dLayer(net_image,shape=[3,3,3,12],strides=[1,1,1,1],
                        name='upconv_image', W_init=tf.contrib.layers.xavier_initializer())
        net_image = SubpixelConv2d(net_image,scale=2,n_out_channel=3,
                        name='subpixel_image')
        net_image = ElementwiseLayer(layer=[gradient_level,net_image],combine_fn=tf.add,name='add_image')
    
    return net_image, net_feature, gradient_level



def LapSRN(inputs, is_train=False, reuse=False):
    n_level = int(np.log2(config.model.scale))
    assert n_level >= 1

    with tf.variable_scope("LapSRN", reuse=reuse) as vs:
        tl.layers.set_name_reuse(reuse)
        
        shapes = tf.shape(inputs)
        inputs_level = InputLayer(inputs, name='input_level')
            
        net_feature = Conv2dLayer(inputs_level, shape=[3,3,3,64], strides=[1,1,1,1], 
                        W_init=tf.contrib.layers.xavier_initializer(), 
                        name='init_conv')
        net_image = inputs_level

        # 2X for each level 
        net_image1, net_feature1, net_gradient1 = LapSRNSingleLevel(net_image, net_feature, reuse=reuse)
        net_image2, net_feature2, net_gradient2 = LapSRNSingleLevel(net_image1, net_feature1, reuse=True)

    return net_image2, net_gradient2, net_image1, net_gradient1