infer_vllm.py 2.02 KB
Newer Older
zhangwq5's avatar
add  
zhangwq5 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# SPDX-License-Identifier: Apache-2.0
import os
import numpy as np
from argparse import Namespace

from vllm import LLM, EngineArgs
from vllm.utils import FlexibleArgumentParser


def parse_args():
    parser = FlexibleArgumentParser()
    parser = EngineArgs.add_cli_args(parser)
    # Set example specific arguments
zhangwq5's avatar
fix3  
zhangwq5 committed
14
    parser.set_defaults(model="/your_path/jina-embeddings-v3",
zhangwq5's avatar
add  
zhangwq5 committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
                        task="embed",
                        enforce_eager=True,
                        trust_remote_code=True)
    return parser.parse_args()


def main(args: Namespace):
    # Sample prompts.
    prompts = [
        "Follow the white rabbit.",  # English
        "Sigue al conejo blanco.",  # Spanish
        "Suis le lapin blanc.",  # French
        "跟着白兔走。",  # Chinese
        "اتبع الأرنب الأبيض.",  # Arabic
        "Folge dem weißen Kaninchen.",  # German
    ]

    # Create an LLM.
    # You should pass task="embed" for embedding models
    model = LLM(**vars(args))

    # Generate embedding. The output is a list of EmbeddingRequestOutputs.
    # Only text matching task is supported for now. See #16120
    outputs = model.embed(prompts)
    embeddings = [output.outputs.embedding for output in outputs]

    # Print the outputs.
    print("\nGenerated Outputs:")
    print("Only text matching task is supported for now. See #16120")
    print("-" * 60)
    for prompt, output in zip(prompts, outputs):
        embeds = output.outputs.embedding
        embeds_trimmed = ((str(embeds[:16])[:-1] +
                           ", ...]") if len(embeds) > 16 else embeds)
        print(f"Prompt: {prompt!r} \n"
              f"Embeddings for text matching: {embeds_trimmed} "
              f"(size={len(embeds)})")
        print("-" * 60)

    script_dir = os.path.dirname(os.path.abspath(__file__))
zhangwq5's avatar
fix  
zhangwq5 committed
55
    output_path = os.path.join(script_dir, 'embeddings_K100_AI.npy')
zhangwq5's avatar
add  
zhangwq5 committed
56
57
58
59
60
61
62
    np.save(output_path, np.array(embeddings))
    print(f"所有嵌入已保存到: {output_path}")


if __name__ == "__main__":
    args = parse_args()
    main(args)