evaluate_mathvista.py 8.74 KB
Newer Older
wanglch's avatar
wanglch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import argparse
import itertools
import json
import os
import random
import time
from functools import partial

import torch
from datasets import concatenate_datasets, load_dataset
from internvl.model import load_model_and_tokenizer
from internvl.train.dataset import build_transform, dynamic_preprocess
from tqdm import tqdm

ds_collections = {
    'MathVista_testmini': {
        'root': 'AI4Math/MathVista',
        'max_new_tokens': 4096,
        'min_new_tokens': 1,
        'split': 'testmini'
    },
    'MathVista_test': {
        'root': 'AI4Math/MathVista',
        'max_new_tokens': 4096,
        'min_new_tokens': 1,
        'split': 'test'
    },
}


COT_INSTRUCTION = (
    'Your task is to answer the question below. '
    "Give step by step reasoning before you answer, and when you're ready to answer, "
    "please use the format \"Final answer: ..\""
    '\n\n'
    'Question:'
    '\n\n'
    '{question}'
)


def collate_fn(batches, tokenizer):
    pixel_values = torch.cat([_['pixel_values'] for _ in batches], dim=0)
    data_items = [_['data_item'] for _ in batches]
    return pixel_values, data_items


class MathVistaDataset(torch.utils.data.Dataset):

    def __init__(self, root, split, input_size=224, dynamic_image_size=False,
                 use_thumbnail=False, max_num=6):
        dataset = load_dataset(root, cache_dir=os.path.join(os.getcwd(), 'data/MathVista/'))
        self.data = dataset[split]
        self.input_size = input_size
        self.dynamic_image_size = dynamic_image_size
        self.use_thumbnail = use_thumbnail
        self.max_num = max_num
        self.transform = build_transform(is_train=False, input_size=input_size)

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        data_item = self.data[idx]
        image = data_item['decoded_image']
        del data_item['decoded_image']

        if self.dynamic_image_size:
            images = dynamic_preprocess(image, image_size=self.input_size,
                                        use_thumbnail=self.use_thumbnail,
                                        max_num=self.max_num)
        else:
            images = [image]
        pixel_values = [self.transform(image) for image in images]
        pixel_values = torch.stack(pixel_values)

        return {
            'pixel_values': pixel_values,
            'data_item': data_item,
        }


class InferenceSampler(torch.utils.data.sampler.Sampler):

    def __init__(self, size):
        self._size = int(size)
        assert size > 0
        self._rank = torch.distributed.get_rank()
        self._world_size = torch.distributed.get_world_size()
        self._local_indices = self._get_local_indices(size, self._world_size, self._rank)

    @staticmethod
    def _get_local_indices(total_size, world_size, rank):
        shard_size = total_size // world_size
        left = total_size % world_size
        shard_sizes = [shard_size + int(r < left) for r in range(world_size)]

        begin = sum(shard_sizes[:rank])
        end = min(sum(shard_sizes[:rank + 1]), total_size)
        return range(begin, end)

    def __iter__(self):
        yield from self._local_indices

    def __len__(self):
        return len(self._local_indices)


def evaluate_chat_model():
    random.seed(args.seed)

    for ds_name in args.datasets:
        dataset = MathVistaDataset(
            root=ds_collections[ds_name]['root'],
            split=ds_collections[ds_name]['split'],
            input_size=image_size,
            dynamic_image_size=args.dynamic,
            use_thumbnail=use_thumbnail,
            max_num=args.max_num
        )
        dataloader = torch.utils.data.DataLoader(
            dataset=dataset,
            sampler=InferenceSampler(len(dataset)),
            batch_size=args.batch_size,
            num_workers=args.num_workers,
            pin_memory=True,
            drop_last=False,
            collate_fn=partial(collate_fn, tokenizer=tokenizer),
        )

        outputs = []
        for _, (pixel_values, data_items) in tqdm(enumerate(dataloader)):
            if args.cot:
                question = COT_INSTRUCTION.format(question=data_items[0]['query'])
            else:
                question = data_items[0]['query']

            pixel_values = pixel_values.to(torch.bfloat16).cuda()
            generation_config = dict(
                num_beams=args.num_beams,
                max_new_tokens=ds_collections[ds_name]['max_new_tokens'] if not args.cot else 4096,
                min_new_tokens=ds_collections[ds_name]['min_new_tokens'],
                do_sample=True if args.temperature > 0 else False,
                temperature=args.temperature,
            )
            pred = model.chat(
                tokenizer=tokenizer,
                pixel_values=pixel_values,
                question=question,
                generation_config=generation_config,
                verbose=True
            )

            data_item = data_items[0]
            data_item['response'] = pred
            outputs.append(data_item)

        torch.distributed.barrier()

        world_size = torch.distributed.get_world_size()
        merged_outputs = [None for _ in range(world_size)]
        torch.distributed.all_gather_object(merged_outputs, json.dumps(outputs))

        merged_outputs = [json.loads(_) for _ in merged_outputs]
        merged_outputs = [_ for _ in itertools.chain.from_iterable(merged_outputs)]

        if torch.distributed.get_rank() == 0:
            temp = {}
            for data_item in merged_outputs:
                pid = data_item['pid']
                temp[pid] = data_item

            print(f'Evaluating {ds_name} ...')
            time_prefix = time.strftime('%y%m%d%H%M%S', time.localtime())
            results_file = f'{ds_name}_{time_prefix}.json'
            output_path = os.path.join(args.out_dir, results_file)
            json.dump(temp, open(output_path, 'w'), indent=4)
            print('Results saved to {}'.format(output_path))

            if args.cot:
                cmd = f'python eval/mathvista/extract_answer.py --output_file {results_file} --output_dir {args.out_dir} --quick_extract'
            else:
                cmd = f'python eval/mathvista/extract_answer.py --output_file {results_file} --output_dir {args.out_dir}'
            print(cmd)
            os.system(cmd)

            cmd = f'python eval/mathvista/calculate_score.py --output_file {results_file} --output_dir {args.out_dir} --score_file {results_file[:-5]}_score.json'
            print(cmd)
            os.system(cmd)


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--checkpoint', type=str, default='')
    parser.add_argument('--datasets', type=str, default='MathVista_testmini')
    parser.add_argument('--batch-size', type=int, default=1)
    parser.add_argument('--num-workers', type=int, default=1)
    parser.add_argument('--num-beams', type=int, default=1)
    parser.add_argument('--temperature', type=float, default=0.0)
    parser.add_argument('--out-dir', type=str, default='results')
    parser.add_argument('--seed', type=int, default=0)
    parser.add_argument('--dynamic', action='store_true')
    parser.add_argument('--max-num', type=int, default=6)
    parser.add_argument('--load-in-8bit', action='store_true')
    parser.add_argument('--load-in-4bit', action='store_true')
    parser.add_argument('--auto', action='store_true')
    parser.add_argument('--cot', action='store_true')
    args = parser.parse_args()

    model_name = '_'.join(args.checkpoint.split('/')[-2:])
    model_name = f'{model_name}_cot' if args.cot else model_name
    args.out_dir = os.path.join(args.out_dir, model_name)

    if not os.path.exists(args.out_dir):
        os.makedirs(args.out_dir, exist_ok=True)

    args.datasets = args.datasets.split(',')
    print('datasets:', args.datasets)
    assert args.batch_size == 1, 'Only batch size 1 is supported'

    torch.distributed.init_process_group(
        backend='nccl',
        world_size=int(os.getenv('WORLD_SIZE', '1')),
        rank=int(os.getenv('RANK', '0')),
    )

    torch.cuda.set_device(int(os.getenv('LOCAL_RANK', 0)))

    model, tokenizer = load_model_and_tokenizer(args)
    image_size = model.config.force_image_size or model.config.vision_config.image_size
    use_thumbnail = model.config.use_thumbnail

    total_params = sum(p.numel() for p in model.parameters()) / 1e9
    if total_params > 20 or args.dynamic:
        args.num_beams = 1
        print(f'[test] total_params: {total_params}B, use num_beams: {args.num_beams}')
    else:
        print(f'[test] total_params: {total_params}B')
    print(f'[test] image_size: {image_size}')
    print(f'[test] template: {model.config.template}')
    print(f'[test] dynamic_image_size: {args.dynamic}')
    print(f'[test] use_thumbnail: {use_thumbnail}')
    print(f'[test] max_num: {args.max_num}')

    evaluate_chat_model()