evaluate_mmbench.py 11.5 KB
Newer Older
wanglch's avatar
wanglch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import argparse
import base64
import itertools
import json
import os
import random
import time
from functools import partial
from io import BytesIO

import pandas as pd
import torch
from internvl.model.internvl_chat import InternVLChatModel
from internvl.train.dataset import build_transform, dynamic_preprocess
from PIL import Image
from torch.utils.data import Dataset
from tqdm import tqdm
from transformers import AutoTokenizer

ds_collections = {
    'mmbench_dev_20230712': {
        'root': 'data/mmbench/mmbench_dev_20230712.tsv',
        'max_new_tokens': 100,
        'min_new_tokens': 1,
        'type': 'dev',
        'language': 'en'
    },
    'mmbench_dev_cn_20231003': {
        'root': 'data/mmbench/mmbench_dev_cn_20231003.tsv',
        'max_new_tokens': 100,
        'min_new_tokens': 1,
        'type': 'dev',
        'language': 'cn'
    },
    'mmbench_dev_en_20231003': {
        'root': 'data/mmbench/mmbench_dev_en_20231003.tsv',
        'max_new_tokens': 100,
        'min_new_tokens': 1,
        'type': 'dev',
        'language': 'en'
    },
    'mmbench_test_cn_20231003': {
        'root': 'data/mmbench/mmbench_test_cn_20231003.tsv',
        'max_new_tokens': 100,
        'min_new_tokens': 1,
        'type': 'test',
        'language': 'cn'
    },
    'mmbench_test_en_20231003': {
        'root': 'data/mmbench/mmbench_test_en_20231003.tsv',
        'max_new_tokens': 100,
        'min_new_tokens': 1,
        'type': 'test',
        'language': 'en'
    },
    'ccbench_dev_cn': {
        'root': 'data/mmbench/CCBench_legacy.tsv',
        'max_new_tokens': 100,
        'min_new_tokens': 1,
        'type': 'dev',
        'language': 'cn'
    }
}


def collate_fn(batches, tokenizer):
    pixel_values = torch.cat([_['pixel_values'] for _ in batches], dim=0)
    questions = [_['question'] for _ in batches]
    answers = [_['answer'] for _ in batches]
    indexes = [_['index'] for _ in batches]
    options = [_['option'] for _ in batches]
    return pixel_values, questions, answers, indexes, options


class MMBenchDataset(torch.utils.data.Dataset):

    def __init__(self, root, prompt, language, input_size=224, dynamic_image_size=False,
                 use_thumbnail=False, max_num=6):
        self.df = pd.read_csv(root, sep='\t')
        self.prompt = prompt
        self.language = language
        self.input_size = input_size
        self.dynamic_image_size = dynamic_image_size
        self.use_thumbnail = use_thumbnail
        self.max_num = max_num
        self.transform = build_transform(is_train=False, input_size=input_size)

    def __len__(self):
        return len(self.df)

    def __getitem__(self, idx):
        index = self.df.iloc[idx]['index']
        image = self.df.iloc[idx]['image']
        question = self.df.iloc[idx]['question']
        answer = self.df.iloc[idx]['answer'] if 'answer' in self.df.iloc[0].keys() else None
        # catetory = self.df.iloc[idx]['category']
        # l2_catetory = self.df.iloc[idx]['l2-category']

        image = Image.open(BytesIO(base64.b64decode(image))).convert('RGB')
        if self.dynamic_image_size:
            images = dynamic_preprocess(image, image_size=self.input_size,
                                        use_thumbnail=self.use_thumbnail,
                                        max_num=self.max_num)
        else:
            images = [image]
        pixel_values = [self.transform(image) for image in images]
        pixel_values = torch.stack(pixel_values)

        option_candidate = ['A', 'B', 'C', 'D', 'E']
        options = {
            cand: self.load_from_df(idx, cand)
            for cand in option_candidate
            if self.load_from_df(idx, cand) is not None
        }

        hint = self.load_from_df(idx, 'hint')
        if hint is not None:
            question = hint + '\n' + question
        for key, item in options.items():
            question += f'\n{key}. {item}'
        if self.language == 'cn':
            question = question + '\n' + self.prompt['cn']
        else:
            question = question + '\n' + self.prompt['en']

        return {
            'question': question,
            'pixel_values': pixel_values,
            'answer': answer,
            'index': index,
            'option': options
        }

    def load_from_df(self, idx, key):
        if key in self.df.iloc[idx] and not pd.isna(self.df.iloc[idx][key]):
            return self.df.iloc[idx][key]
        else:
            return None


class InferenceSampler(torch.utils.data.sampler.Sampler):

    def __init__(self, size):
        self._size = int(size)
        assert size > 0
        self._rank = torch.distributed.get_rank()
        self._world_size = torch.distributed.get_world_size()
        self._local_indices = self._get_local_indices(size, self._world_size, self._rank)

    @staticmethod
    def _get_local_indices(total_size, world_size, rank):
        shard_size = total_size // world_size
        left = total_size % world_size
        shard_sizes = [shard_size + int(r < left) for r in range(world_size)]

        begin = sum(shard_sizes[:rank])
        end = min(sum(shard_sizes[:rank + 1]), total_size)
        return range(begin, end)

    def __iter__(self):
        yield from self._local_indices

    def __len__(self):
        return len(self._local_indices)


def post_process(pred, option):
    pred = pred.strip()
    option_candidate = list(option.keys())
    if len(pred) == 1:
        return pred
    elif len(pred) != 1 and pred[0] in option_candidate:
        return pred[0]
    elif len(pred) != 1 and pred[0] not in option_candidate:
        for k, v in option.items():
            if v in pred:
                return k

    return pred


def evaluate_chat_model():
    random.seed(args.seed)

    for ds_name in args.datasets:
        dataset = MMBenchDataset(
            root=ds_collections[ds_name]['root'],
            prompt=prompt,
            language=ds_collections[ds_name]['language'],
            input_size=image_size,
            dynamic_image_size=args.dynamic,
            use_thumbnail=use_thumbnail,
            max_num=args.max_num
        )
        dataloader = torch.utils.data.DataLoader(
            dataset=dataset,
            sampler=InferenceSampler(len(dataset)),
            batch_size=args.batch_size,
            num_workers=args.num_workers,
            pin_memory=True,
            drop_last=False,
            collate_fn=partial(collate_fn, tokenizer=tokenizer),
        )

        outputs = []
        for _, (pixel_values, questions, answers, indexes, options) in tqdm(enumerate(dataloader)):
            pixel_values = pixel_values.to(torch.bfloat16).cuda()
            generation_config = dict(
                num_beams=args.num_beams,
                max_new_tokens=ds_collections[ds_name]['max_new_tokens'],
                min_new_tokens=ds_collections[ds_name]['min_new_tokens'],
                do_sample=True if args.temperature > 0 else False,
                temperature=args.temperature,
            )
            pred = model.chat(
                tokenizer=tokenizer,
                pixel_values=pixel_values,
                question=questions[0],
                generation_config=generation_config,
                verbose=True
            )
            preds = [post_process(pred, options[0])]

            for question, pred, answer, index in zip(questions, preds, answers, indexes):
                outputs.append({
                    'question': question,
                    'answer': pred,
                    'gt_answers': answer,
                    'index': int(index)
                })

        torch.distributed.barrier()

        world_size = torch.distributed.get_world_size()
        merged_outputs = [None for _ in range(world_size)]
        torch.distributed.all_gather_object(merged_outputs, json.dumps(outputs))

        merged_outputs = [json.loads(_) for _ in merged_outputs]
        merged_outputs = [_ for _ in itertools.chain.from_iterable(merged_outputs)]

        if torch.distributed.get_rank() == 0:

            print(f'Evaluating {ds_name} ...')
            time_prefix = time.strftime('%y%m%d%H%M%S', time.localtime())
            results_file = f'{ds_name}_{time_prefix}.xlsx'
            output_path = os.path.join(args.out_dir, results_file)
            df = pd.read_table(ds_collections[ds_name]['root'])
            cur_df = df.copy()
            if 'mmbench' in ds_name:
                cur_df = cur_df.drop(columns=['hint', 'category', 'source', 'image', 'comment', 'l2-category'])
                cur_df.insert(6, 'prediction', None)
            else:
                cur_df = cur_df.drop(columns=['category', 'image'])
                cur_df.insert(8, 'prediction', None)
            for item in merged_outputs:
                cur_df.loc[df['index'] == item['index'], 'prediction'] = item['answer']

            cur_df.to_excel(output_path, index=False, engine='openpyxl')
            print('Results saved to {}'.format(output_path))


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--checkpoint', type=str, default='')
    parser.add_argument('--datasets', type=str, default='mmbench_dev_20230712')
    parser.add_argument('--batch-size', type=int, default=1)
    parser.add_argument('--num-workers', type=int, default=1)
    parser.add_argument('--num-beams', type=int, default=5)
    parser.add_argument('--temperature', type=float, default=0.0)
    parser.add_argument('--out-dir', type=str, default='results')
    parser.add_argument('--seed', type=int, default=0)
    parser.add_argument('--dynamic', action='store_true')
    parser.add_argument('--max-num', type=int, default=6)
    parser.add_argument('--load-in-8bit', action='store_true')
    parser.add_argument('--load-in-4bit', action='store_true')
    parser.add_argument('--auto', action='store_true')
    args = parser.parse_args()

    if not os.path.exists(args.out_dir):
        os.makedirs(args.out_dir)

    args.datasets = args.datasets.split(',')
    print('datasets:', args.datasets)
    assert args.batch_size == 1, 'Only batch size 1 is supported'

    torch.distributed.init_process_group(
        backend='nccl',
        world_size=int(os.getenv('WORLD_SIZE', '1')),
        rank=int(os.getenv('RANK', '0')),
    )

    torch.cuda.set_device(int(os.getenv('LOCAL_RANK', 0)))

    if args.auto:
        os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
    kwargs = {'device_map': 'auto'} if args.auto else {}
    tokenizer = AutoTokenizer.from_pretrained(args.checkpoint, trust_remote_code=True, use_fast=False)
    model = InternVLChatModel.from_pretrained(
        args.checkpoint, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16,
        load_in_8bit=args.load_in_8bit, load_in_4bit=args.load_in_4bit, **kwargs).eval()
    if not args.load_in_8bit and not args.load_in_4bit and not args.auto:
        model = model.cuda()
    image_size = model.config.force_image_size or model.config.vision_config.image_size
    use_thumbnail = model.config.use_thumbnail

    total_params = sum(p.numel() for p in model.parameters()) / 1e9
    if total_params > 20 or args.dynamic:
        args.num_beams = 1
        print(f'[test] total_params: {total_params}B, use num_beams: {args.num_beams}')
    else:
        print(f'[test] total_params: {total_params}B')
    print(f'[test] image_size: {image_size}')
    print(f'[test] template: {model.config.template}')
    print(f'[test] dynamic_image_size: {args.dynamic}')
    print(f'[test] use_thumbnail: {use_thumbnail}')
    print(f'[test] max_num: {args.max_num}')

    prompt = {
        'en': "Answer with the option's letter from the given choices directly.",
        'cn': '请直接回答选项字母。'
    }
    evaluate_chat_model()