"sgl-router/py_src/sglang_router/mini_lb.py" did not exist on "c7c7dbebbef194c445851b275df5d74b8df43362"
evaluate_cmmmu.py 7.05 KB
Newer Older
wanglch's avatar
wanglch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import argparse
import json
import os
import random

import torch
from internvl.model.internvl_chat import InternVLChatModel
from internvl.train.dataset import build_transform, dynamic_preprocess
from PIL import Image
from tqdm import tqdm
from transformers import AutoTokenizer

ds_collections = {
    'art_and_design': {
        'root': 'data/',
        'annotation': 'data/cmmmu-data/llava_art_and_design.jsonl',
        'max_new_tokens': 999,
        'min_new_tokens': 1,
    },
    'business': {
        'root': 'data/',
        'annotation': 'data/cmmmu-data/llava_business.jsonl',
        'max_new_tokens': 999,
        'min_new_tokens': 1,
    },
    'health_and_medicine': {
        'root': 'data/',
        'annotation': 'data/cmmmu-data/llava_health_and_medicine.jsonl',
        'max_new_tokens': 999,
        'min_new_tokens': 1,
    },
    'humanities_and_social_sciences': {
        'root': 'data/',
        'annotation': 'data/cmmmu-data/llava_humanities_and_social_sciences.jsonl',
        'max_new_tokens': 999,
        'min_new_tokens': 1,
    },
    'science': {
        'root': 'data/',
        'annotation': 'data/cmmmu-data/llava_science.jsonl',
        'max_new_tokens': 999,
        'min_new_tokens': 1,
    },
    'technology_and_engineering': {
        'root': 'data/',
        'annotation': 'data/cmmmu-data/llava_technology_and_engineering.jsonl',
        'max_new_tokens': 999,
        'min_new_tokens': 1,
    },
}


class VQADataset(torch.utils.data.Dataset):

    def __init__(self, root, annotation, input_size=224, dynamic_image_size=False,
                 use_thumbnail=False, max_num=6):
        self.root = root
        self.items = []
        f = open(annotation)
        data = f.readlines()
        for data_line in data:
            data_line = json.loads(data_line)
            self.items.append(data_line)
        self.input_size = input_size
        self.dynamic_image_size = dynamic_image_size
        self.use_thumbnail = use_thumbnail
        self.max_num = max_num
        self.transform = build_transform(is_train=False, input_size=input_size)

    def __len__(self):
        return len(self.items)

    def __getitem__(self, idx):
        item = self.items[idx]
        image_path, question = item['image'], item['text']
        image_path = os.path.join(self.root, image_path)
        image = Image.open(image_path).convert('RGB')
        if self.dynamic_image_size:
            images = dynamic_preprocess(image, image_size=self.input_size,
                                        use_thumbnail=self.use_thumbnail,
                                        max_num=self.max_num)
        else:
            images = [image]
        pixel_values = [self.transform(image) for image in images]
        pixel_values = torch.stack(pixel_values)

        return {
            'question': question,
            'pixel_values': pixel_values,
            'item': item,
        }


def evaluate_chat_model():
    random.seed(args.seed)

    for ds_name in args.datasets:
        dataset = VQADataset(
            root=ds_collections[ds_name]['root'],
            annotation=ds_collections[ds_name]['annotation'],
            input_size=image_size,
            dynamic_image_size=args.dynamic,
            use_thumbnail=use_thumbnail,
            max_num=args.max_num
        )

        print(f'Evaluating {ds_name} ...')
        results_file = f'{model_id}_{ds_name}.jsonl'
        results_file = os.path.join(args.out_dir, results_file)
        writer = open(results_file, 'w')

        for _, data in tqdm(enumerate(dataset)):
            pixel_value = data['pixel_values']
            question = data['question']
            item = data['item']
            pixel_value = pixel_value.to(torch.bfloat16).cuda()
            generation_config = dict(
                num_beams=args.num_beams,
                max_new_tokens=ds_collections[ds_name]['max_new_tokens'],
                min_new_tokens=ds_collections[ds_name]['min_new_tokens'],
                do_sample=True if args.temperature > 0 else False,
                temperature=args.temperature,
            )
            pred = model.chat(
                tokenizer=tokenizer,
                pixel_values=pixel_value,
                question=question,
                generation_config=generation_config,
                verbose=True
            )
            question_id = item['question_id']
            text = item['text']
            output = {
                'question_id': question_id,
                'prompt': text,
                'text': pred,
                'model_id': model_id,
                'metadata': {}
            }
            writer.write(json.dumps(output, ensure_ascii=False) + '\n')
            writer.flush()
        print('Results saved to {}'.format(results_file))


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--checkpoint', type=str, default='')
    parser.add_argument('--datasets', type=str, default='')
    parser.add_argument('--batch-size', type=int, default=1)
    parser.add_argument('--num-workers', type=int, default=1)
    parser.add_argument('--num-beams', type=int, default=1)
    parser.add_argument('--temperature', type=float, default=0.0)
    parser.add_argument('--out-dir', type=str, default='results')
    parser.add_argument('--seed', type=int, default=0)
    parser.add_argument('--dynamic', action='store_true')
    parser.add_argument('--max-num', type=int, default=6)
    parser.add_argument('--load-in-8bit', action='store_true')
    parser.add_argument('--load-in-4bit', action='store_true')
    parser.add_argument('--auto', action='store_true')
    args = parser.parse_args()

    if not os.path.exists(args.out_dir):
        os.makedirs(args.out_dir)

    args.datasets = args.datasets.split(',')
    print('datasets:', args.datasets)
    assert args.batch_size == 1, 'Only batch size 1 is supported'

    if args.auto:
        os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
    kwargs = {'device_map': 'auto'} if args.auto else {}
    tokenizer = AutoTokenizer.from_pretrained(args.checkpoint, trust_remote_code=True, use_fast=False)
    model = InternVLChatModel.from_pretrained(
        args.checkpoint, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16,
        load_in_8bit=args.load_in_8bit, load_in_4bit=args.load_in_4bit, **kwargs).eval()
    if not args.load_in_8bit and not args.load_in_4bit and not args.auto:
        model = model.cuda()
    image_size = model.config.force_image_size or model.config.vision_config.image_size
    use_thumbnail = model.config.use_thumbnail

    total_params = sum(p.numel() for p in model.parameters()) / 1e9
    if total_params > 20 or args.dynamic:
        args.num_beams = 1
        print(f'[test] total_params: {total_params}B, use num_beams: {args.num_beams}')
    else:
        print(f'[test] total_params: {total_params}B')
    print(f'[test] image_size: {image_size}')
    print(f'[test] template: {model.config.template}')
    print(f'[test] dynamic_image_size: {args.dynamic}')
    print(f'[test] use_thumbnail: {use_thumbnail}')
    print(f'[test] max_num: {args.max_num}')

    model_id = '_'.join(args.checkpoint.split('/')[-2:])
    evaluate_chat_model()