pad_data_collator.py 4.66 KB
Newer Older
wanglch's avatar
wanglch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import numpy as np
import torch

IGNORE_INDEX = -100


def pad_data_collator(features, pad_id=0):

    first = features[0]
    batch = {}

    batch_lens = [feat['input_ids'].shape for feat in features]
    max_item_length = max(batch_lens)[0]
    for idx in range(len(features)):
        feat = features[idx]
        temp_input_ids = torch.LongTensor([pad_id] * max_item_length)
        temp_input_ids[:feat['input_ids'].shape[0]] = feat['input_ids']
        feat['input_ids'] = temp_input_ids
        temp_labels = torch.LongTensor([IGNORE_INDEX] * max_item_length)
        temp_labels[:feat['labels'].shape[0]] = feat['labels']
        feat['labels'] = temp_labels
        feat['attention_mask'] = feat['input_ids'].ne(pad_id)

    # Special handling for labels.
    # Ensure that tensor is created with the correct type
    # (it should be automatically the case, but let's make sure of it.)
    if 'label' in first and first['label'] is not None:
        label = first['label'].item() if isinstance(first['label'], torch.Tensor) else first['label']
        dtype = torch.long if isinstance(label, int) else torch.float
        batch['labels'] = torch.tensor([f['label'] for f in features], dtype=dtype)
    elif 'label_ids' in first and first['label_ids'] is not None:
        if isinstance(first['label_ids'], torch.Tensor):
            batch['labels'] = torch.stack([f['label_ids'] for f in features])
        else:
            dtype = torch.long if isinstance(first['label_ids'][0], int) else torch.float
            batch['labels'] = torch.tensor([f['label_ids'] for f in features], dtype=dtype)

    # Handling of all other possible keys.
    # Again, we will use the first element to figure out which key/values are not None for this model.
    for k, v in first.items():
        if k not in ('label', 'label_ids') and v is not None and not isinstance(v, str):
            if isinstance(v, torch.Tensor):
                batch[k] = torch.stack([f[k] for f in features])
            elif isinstance(v, np.ndarray):
                batch[k] = torch.tensor(np.stack([f[k] for f in features]))
            else:
                batch[k] = torch.tensor([f[k] for f in features])
    return batch


def concat_pad_data_collator(features, pad_id=0):

    first = features[0]
    batch = {}

    batch_lens = [feat['input_ids'].shape for feat in features]
    max_item_length = max(batch_lens)[0]
    for idx in range(len(features)):
        feat = features[idx]
        temp_input_ids = torch.LongTensor([pad_id] * max_item_length)
        temp_input_ids[:feat['input_ids'].shape[0]] = feat['input_ids']
        feat['input_ids'] = temp_input_ids
        temp_labels = torch.LongTensor([IGNORE_INDEX] * max_item_length)
        temp_labels[:feat['labels'].shape[0]] = feat['labels']
        feat['labels'] = temp_labels
        feat['attention_mask'] = feat['input_ids'].ne(pad_id)

    # Special handling for labels.
    # Ensure that tensor is created with the correct type
    # (it should be automatically the case, but let's make sure of it.)
    if 'label' in first and first['label'] is not None:
        label = first['label'].item() if isinstance(first['label'], torch.Tensor) else first['label']
        dtype = torch.long if isinstance(label, int) else torch.float
        batch['labels'] = torch.tensor([f['label'] for f in features], dtype=dtype)
    elif 'label_ids' in first and first['label_ids'] is not None:
        if isinstance(first['label_ids'], torch.Tensor):
            batch['labels'] = torch.stack([f['label_ids'] for f in features])
        else:
            dtype = torch.long if isinstance(first['label_ids'][0], int) else torch.float
            batch['labels'] = torch.tensor([f['label_ids'] for f in features], dtype=dtype)

    # Handling of all other possible keys.
    # Again, we will use the first element to figure out which key/values are not None for this model.
    for k, v in first.items():
        if k not in ('label', 'label_ids', 'pixel_values', 'image_flags') and \
                v is not None and not isinstance(v, str):
            if isinstance(v, torch.Tensor):
                batch[k] = torch.stack([f[k] for f in features])
            elif isinstance(v, np.ndarray):
                batch[k] = torch.tensor(np.stack([f[k] for f in features]))
            else:
                batch[k] = torch.tensor([f[k] for f in features])
        if k in ('pixel_values', 'image_flags'):
            if isinstance(v, torch.Tensor):
                batch[k] = torch.concat([f[k] for f in features])
            elif isinstance(v, np.ndarray):
                batch[k] = torch.concat(np.stack([f[k] for f in features]))
            else:
                batch[k] = torch.concat([f[k] for f in features])
    return batch