"docs/en/get_started.md" did not exist on "a63f66f735f229d5f52523a88acf632485e51d99"
gflops.py 3.96 KB
Newer Older
wanglch's avatar
wanglch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# --------------------------------------------------------
# InternVL
# Copyright (c) 2023 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------

import argparse
import time

import torch
from mmcv.cnn import get_model_complexity_info
from mmcv.cnn.utils.flops_counter import flops_to_string, params_to_string
from models.intern_vit_6b import InternViT6B
from tqdm import tqdm

parser = argparse.ArgumentParser(description='Hyperparams')
parser.add_argument('config', nargs='?', type=str, default=None)
args = parser.parse_args()

configs = {
    'a': {
        'embed_dim': 3968,
        'num_heads': 62,
        'mlp_ratio': 4,
        'depth': 32
    },
    'e': {
        'embed_dim': 3200,
        'num_heads': 50,
        'mlp_ratio': 4,
        'depth': 48
    },
    'f': {
        'embed_dim': 3200,
        'num_heads': 25,
        'mlp_ratio': 4,
        'depth': 48
    },
    'g': {
        'embed_dim': 2496,
        'num_heads': 39,
        'mlp_ratio': 8,
        'depth': 48
    },
    'i': {
        'embed_dim': 2816,
        'num_heads': 44,
        'mlp_ratio': 4,
        'depth': 64
    },
    'm': {
        'embed_dim': 2496,
        'num_heads': 39,
        'mlp_ratio': 4,
        'depth': 80
    },
}


def sa_flops(h, w, dim):
    return 2 * h * w * h * w * dim


def get_flops(model, input_shape):
    flops, params = get_model_complexity_info(model,
                                              input_shape,
                                              as_strings=False)
    _, H, W = input_shape
    print(flops, params)
    for i in range(model.depth):
        flops += sa_flops(H // model.patch_size, W // model.patch_size,
                          model.embed_dim)
    return flops_to_string(flops), params_to_string(params)


if __name__ == '__main__':

    input_shape = (3, 224, 224)

    config = configs[args.config]
    print(config)
    model = InternViT6B(in_chans=3,
                        patch_size=14,
                        img_size=224,
                        pretrain_size=224,
                        qkv_bias=False,
                        drop_path_rate=0.0,
                        embed_dim=config['embed_dim'],
                        num_heads=config['num_heads'],
                        mlp_ratio=config['mlp_ratio'],
                        init_values=0.1,
                        qk_normalization=True,
                        depth=config['depth'],
                        use_flash_attn=True,
                        with_cp=True,
                        freeze_vit=True,
                        cls_target='cls_patch_concat',
                        num_classes=0,
                        attn_pool_num_heads=16,
                        clip_embed_dim=768,
                        head_norm_type='bn').to(torch.bfloat16)

    for k, v in model.named_parameters():
        v.requires_grad = True

    if torch.cuda.is_available():
        model.cuda()
    model.eval()

    flops, params = get_flops(model, input_shape)
    split_line = '=' * 30
    print(f'{split_line}\nInput shape: {input_shape}\n'
          f'Flops: {flops}\nParams: {params}\n{split_line}')
    print('!!!Please be cautious if you use the results in papers. '
          'You may need to check if all ops are supported and verify that the '
          'flops computation is correct.')

    image = torch.rand(128, 3, 224, 224).to(torch.bfloat16).cuda()
    torch.cuda.synchronize()
    start_time = time.time()
    with torch.no_grad():
        for i in tqdm(range(10)):
            out = model(image)
    torch.cuda.synchronize()
    end_time = time.time()

    print('warmup time: ', end_time - start_time)

    torch.cuda.synchronize()
    start_time = time.time()
    with torch.no_grad():
        for i in tqdm(range(50)):
            out = model(image)
    torch.cuda.synchronize()
    end_time = time.time()
    print('using time: ', (end_time - start_time))
    print('FPS: ', 50 * 128 / (end_time - start_time))
    print(config)