"vscode:/vscode.git/clone" did not exist on "96a5e4dd795b675210b0d18f5e9fab69ec69bb6e"
cached_image_folder.py 17.9 KB
Newer Older
wanglch's avatar
wanglch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
# --------------------------------------------------------
# InternVL
# Copyright (c) 2023 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------

import io
import json
import logging
import math
import os
import os.path as osp
import re
import time
from abc import abstractmethod

import mmcv
import torch
import torch.distributed as dist
import torch.utils.data as data
from mmcv.fileio import FileClient
from PIL import Image
from tqdm import tqdm, trange

from .zipreader import ZipReader, is_zip_path

_logger = logging.getLogger(__name__)

_ERROR_RETRY = 50


def has_file_allowed_extension(filename, extensions):
    """Checks if a file is an allowed extension.

    Args:
        filename (string): path to a file
    Returns:
        bool: True if the filename ends with a known image extension
    """
    filename_lower = filename.lower()
    return any(filename_lower.endswith(ext) for ext in extensions)


def find_classes(dir):
    classes = [
        d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d))
    ]
    classes.sort()
    class_to_idx = {classes[i]: i for i in range(len(classes))}
    return classes, class_to_idx


def make_dataset(dir, class_to_idx, extensions):
    images = []
    dir = os.path.expanduser(dir)
    for target in sorted(os.listdir(dir)):
        d = os.path.join(dir, target)
        if not os.path.isdir(d):
            continue
        for root, _, fnames in sorted(os.walk(d)):
            for fname in sorted(fnames):
                if has_file_allowed_extension(fname, extensions):
                    path = os.path.join(root, fname)
                    item = (path, class_to_idx[target])
                    images.append(item)

    return images


def make_dataset_with_ann(ann_file, img_prefix, extensions):
    images = []
    with open(ann_file, 'r') as f:
        contents = f.readlines()
        for line_str in contents:
            path_contents = [c for c in line_str.split('\t')]
            im_file_name = path_contents[0]
            class_index = int(path_contents[1])
            assert str.lower(os.path.splitext(im_file_name)[-1]) in extensions
            item = (os.path.join(img_prefix, im_file_name), class_index)
            images.append(item)

    return images


class DatasetFolder(data.Dataset):
    """A generic data loader where the samples are arranged in this way: ::

    root/class_x/xxx.ext
        root/class_x/xxy.ext
        root/class_x/xxz.ext
        root/class_y/123.ext
        root/class_y/nsdf3.ext
        root/class_y/asd932_.ext
    Args:
        root (string): Root directory path.
        loader (callable): A function to load a sample given its path.
        extensions (list[string]): A list of allowed extensions.
        transform (callable, optional): A function/transform that takes in
            a sample and returns a transformed version.
            E.g, ``transforms.RandomCrop`` for images.
        target_transform (callable, optional): A function/transform that takes
            in the target and transforms it.
     Attributes:
        samples (list): List of (sample path, class_index) tuples
    """

    def __init__(self,
                 root,
                 loader,
                 extensions,
                 ann_file='',
                 img_prefix='',
                 transform=None,
                 target_transform=None,
                 cache_mode='no'):
        # image folder mode
        if ann_file == '':
            _, class_to_idx = find_classes(root)
            samples = make_dataset(root, class_to_idx, extensions)
        # zip mode
        else:
            samples = make_dataset_with_ann(os.path.join(root, ann_file),
                                            os.path.join(root, img_prefix),
                                            extensions)

        if len(samples) == 0:
            raise (RuntimeError('Found 0 files in subfolders of: ' + root +
                                '\n' + 'Supported extensions are: ' +
                                ','.join(extensions)))

        self.root = root
        self.loader = loader
        self.extensions = extensions

        self.samples = samples
        self.labels = [y_1k for _, y_1k in samples]
        self.classes = list(set(self.labels))

        self.transform = transform
        self.target_transform = target_transform

        self.cache_mode = cache_mode
        if self.cache_mode != 'no':
            self.init_cache()

    def init_cache(self):
        assert self.cache_mode in ['part', 'full']
        n_sample = len(self.samples)
        global_rank = dist.get_rank()
        world_size = dist.get_world_size()

        samples_bytes = [None for _ in range(n_sample)]
        start_time = time.time()
        for index in range(n_sample):
            if index % (n_sample // 10) == 0:
                t = time.time() - start_time
                print(
                    f'global_rank {dist.get_rank()} cached {index}/{n_sample} takes {t:.2f}s per block'
                )
                start_time = time.time()
            path, target = self.samples[index]
            if self.cache_mode == 'full':
                samples_bytes[index] = (ZipReader.read(path), target)
            elif self.cache_mode == 'part' and index % world_size == global_rank:
                samples_bytes[index] = (ZipReader.read(path), target)
            else:
                samples_bytes[index] = (path, target)
        self.samples = samples_bytes

    def __getitem__(self, index):
        """
        Args:
            index (int): Index
        Returns:
            tuple: (sample, target) where target is class_index of the target class.
        """
        path, target = self.samples[index]
        sample = self.loader(path)
        if self.transform is not None:
            sample = self.transform(sample)
        if self.target_transform is not None:
            target = self.target_transform(target)

        return sample, target

    def __len__(self):
        return len(self.samples)

    def __repr__(self):
        fmt_str = 'Dataset ' + self.__class__.__name__ + '\n'
        fmt_str += '    Number of datapoints: {}\n'.format(self.__len__())
        fmt_str += '    Root Location: {}\n'.format(self.root)
        tmp = '    Transforms (if any): '
        fmt_str += '{0}{1}\n'.format(
            tmp,
            self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
        tmp = '    Target Transforms (if any): '
        fmt_str += '{0}{1}'.format(
            tmp,
            self.target_transform.__repr__().replace('\n',
                                                     '\n' + ' ' * len(tmp)))

        return fmt_str


IMG_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif']


def pil_loader(path):
    # open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
    if isinstance(path, bytes):
        img = Image.open(io.BytesIO(path))
    elif is_zip_path(path):
        data = ZipReader.read(path)
        img = Image.open(io.BytesIO(data))
    else:
        with open(path, 'rb') as f:
            img = Image.open(f)
            return img.convert('RGB')

    return img.convert('RGB')


def accimage_loader(path):
    import accimage
    try:
        return accimage.Image(path)
    except IOError:
        # Potentially a decoding problem, fall back to PIL.Image
        return pil_loader(path)


def default_img_loader(path):
    from torchvision import get_image_backend
    if get_image_backend() == 'accimage':
        return accimage_loader(path)
    else:
        return pil_loader(path)


class CachedImageFolder(DatasetFolder):
    """A generic data loader where the images are arranged in this way: ::

    root/dog/xxx.png
        root/dog/xxy.png
        root/dog/xxz.png
        root/cat/123.png
        root/cat/nsdf3.png
        root/cat/asd932_.png
    Args:
        root (string): Root directory path.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
        loader (callable, optional): A function to load an image given its path.
     Attributes:
        imgs (list): List of (image path, class_index) tuples
    """

    def __init__(self,
                 root,
                 ann_file='',
                 img_prefix='',
                 transform=None,
                 target_transform=None,
                 loader=default_img_loader,
                 cache_mode='no'):
        super(CachedImageFolder,
              self).__init__(root,
                             loader,
                             IMG_EXTENSIONS,
                             ann_file=ann_file,
                             img_prefix=img_prefix,
                             transform=transform,
                             target_transform=target_transform,
                             cache_mode=cache_mode)
        self.imgs = self.samples

    def __getitem__(self, index):
        """
        Args:
            index (int): Index
        Returns:
            tuple: (image, target) where target is class_index of the target class.
        """
        path, target = self.samples[index]
        image = self.loader(path)
        if self.transform is not None:
            img = self.transform(image)
        else:
            img = image
        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target


class ImageCephDataset(data.Dataset):

    def __init__(self,
                 root,
                 split,
                 parser=None,
                 transform=None,
                 target_transform=None,
                 on_memory=False):
        if '22k' in root:
            # Imagenet 22k
            annotation_root = 'meta_data/'
        else:
            # Imagenet
            annotation_root = 'meta_data/'
        if parser is None or isinstance(parser, str):
            parser = ParserCephImage(root=root,
                                     split=split,
                                     annotation_root=annotation_root,
                                     on_memory=on_memory)
        self.parser = parser
        self.transform = transform
        self.target_transform = target_transform
        self._consecutive_errors = 0

    def __getitem__(self, index):
        img, target = self.parser[index]
        self._consecutive_errors = 0
        if self.transform is not None:
            img = self.transform(img)
        if target is None:
            target = -1
        elif self.target_transform is not None:
            target = self.target_transform(target)
        return img, target

    def __len__(self):
        return len(self.parser)

    def filename(self, index, basename=False, absolute=False):
        return self.parser.filename(index, basename, absolute)

    def filenames(self, basename=False, absolute=False):
        return self.parser.filenames(basename, absolute)


class Parser:

    def __init__(self):
        pass

    @abstractmethod
    def _filename(self, index, basename=False, absolute=False):
        pass

    def filename(self, index, basename=False, absolute=False):
        return self._filename(index, basename=basename, absolute=absolute)

    def filenames(self, basename=False, absolute=False):
        return [
            self._filename(index, basename=basename, absolute=absolute)
            for index in range(len(self))
        ]


class ParserCephImage(Parser):

    def __init__(self,
                 root,
                 split,
                 annotation_root,
                 on_memory=False,
                 **kwargs):
        super().__init__()

        self.file_client = None
        self.kwargs = kwargs

        self.root = root  # dataset:s3://imagenet22k
        if '22k' in root:
            self.io_backend = 'petrel'
            with open(osp.join(annotation_root, '22k_class_to_idx.json'),
                      'r') as f:
                self.class_to_idx = json.loads(f.read())
            with open(osp.join(annotation_root, '22k_label.txt'), 'r') as f:
                self.samples = f.read().splitlines()
        else:
            self.io_backend = 'disk'
            self.class_to_idx = None
            with open(osp.join(annotation_root, f'{split}.txt'), 'r') as f:
                self.samples = f.read().splitlines()
        local_rank = None
        local_size = None
        self._consecutive_errors = 0
        self.on_memory = on_memory
        if on_memory:
            self.holder = {}
            if local_rank is None:
                local_rank = int(os.environ.get('LOCAL_RANK', 0))
            if local_size is None:
                local_size = int(os.environ.get('LOCAL_SIZE', 1))
            self.local_rank = local_rank
            self.local_size = local_size
            self.rank = int(os.environ['RANK'])
            self.world_size = int(os.environ['WORLD_SIZE'])
            self.num_replicas = int(os.environ['WORLD_SIZE'])
            self.num_parts = local_size
            self.num_samples = int(
                math.ceil(len(self.samples) * 1.0 / self.num_replicas))
            self.total_size = self.num_samples * self.num_replicas
            self.total_size_parts = self.num_samples * self.num_replicas // self.num_parts
            self.load_onto_memory_v2()

    def load_onto_memory(self):
        print('Loading images onto memory...', self.local_rank,
              self.local_size)
        if self.file_client is None:
            self.file_client = FileClient(self.io_backend, **self.kwargs)
        for index in trange(len(self.samples)):
            if index % self.local_size != self.local_rank:
                continue
            path, _ = self.samples[index].split(' ')
            path = osp.join(self.root, path)
            img_bytes = self.file_client.get(path)
            self.holder[path] = img_bytes

        print('Loading complete!')

    def load_onto_memory_v2(self):
        # print("Loading images onto memory...", self.local_rank, self.local_size)
        t = torch.Generator()
        t.manual_seed(0)
        indices = torch.randperm(len(self.samples), generator=t).tolist()
        # indices = range(len(self.samples))
        indices = [i for i in indices if i % self.num_parts == self.local_rank]
        # add extra samples to make it evenly divisible
        indices += indices[:(self.total_size_parts - len(indices))]
        assert len(indices) == self.total_size_parts

        # subsample
        indices = indices[self.rank // self.num_parts:self.
                          total_size_parts:self.num_replicas // self.num_parts]
        assert len(indices) == self.num_samples

        if self.file_client is None:
            self.file_client = FileClient(self.io_backend, **self.kwargs)
        for index in tqdm(indices):
            if index % self.local_size != self.local_rank:
                continue
            path, _ = self.samples[index].split(' ')
            path = osp.join(self.root, path)
            img_bytes = self.file_client.get(path)

            self.holder[path] = img_bytes

        print('Loading complete!')

    def __getitem__(self, index):
        if self.file_client is None:
            self.file_client = FileClient(self.io_backend, **self.kwargs)

        filepath, target = self.samples[index].split(' ')
        filepath = osp.join(self.root, filepath)

        try:
            if self.on_memory:
                img_bytes = self.holder[filepath]
            else:
                # pass
                img_bytes = self.file_client.get(filepath)
            img = mmcv.imfrombytes(img_bytes)[:, :, ::-1]
        except Exception as e:
            _logger.warning(
                f'Skipped sample (index {index}, file {filepath}). {str(e)}')
            self._consecutive_errors += 1
            if self._consecutive_errors < _ERROR_RETRY:
                return self.__getitem__((index + 1) % len(self))
            else:
                raise e
        self._consecutive_errors = 0

        img = Image.fromarray(img)
        try:
            if self.class_to_idx is not None:
                target = self.class_to_idx[target]
            else:
                target = int(target)
        except:
            print(filepath, target)
            exit()

        return img, target

    def __len__(self):
        return len(self.samples)

    def _filename(self, index, basename=False, absolute=False):
        filename, _ = self.samples[index].split(' ')
        filename = osp.join(self.root, filename)

        return filename


def get_temporal_info(date, miss_hour=False):
    try:
        if date:
            if miss_hour:
                pattern = re.compile(r'(\d*)-(\d*)-(\d*)', re.I)
            else:
                pattern = re.compile(r'(\d*)-(\d*)-(\d*) (\d*):(\d*):(\d*)',
                                     re.I)
            m = pattern.match(date.strip())

            if m:
                year = int(m.group(1))
                month = int(m.group(2))
                day = int(m.group(3))
                x_month = math.sin(2 * math.pi * month / 12)
                y_month = math.cos(2 * math.pi * month / 12)
                if miss_hour:
                    x_hour = 0
                    y_hour = 0
                else:
                    hour = int(m.group(4))
                    x_hour = math.sin(2 * math.pi * hour / 24)
                    y_hour = math.cos(2 * math.pi * hour / 24)
                return [x_month, y_month, x_hour, y_hour]
            else:
                return [0, 0, 0, 0]
        else:
            return [0, 0, 0, 0]
    except:
        return [0, 0, 0, 0]


def get_spatial_info(latitude, longitude):
    if latitude and longitude:
        latitude = math.radians(latitude)
        longitude = math.radians(longitude)
        x = math.cos(latitude) * math.cos(longitude)
        y = math.cos(latitude) * math.sin(longitude)
        z = math.sin(latitude)
        return [x, y, z]
    else:
        return [0, 0, 0]