build.py 12.9 KB
Newer Older
wanglch's avatar
wanglch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
# --------------------------------------------------------
# InternVL
# Copyright (c) 2023 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------

import os

import numpy as np
import torch
import torch.distributed as dist
from timm.data import Mixup, create_transform
from torchvision import transforms
from torchvision.datasets import ImageFolder

from .cached_image_folder import ImageCephDataset
from .samplers import NodeDistributedSampler, SubsetRandomSampler

try:
    from torchvision.transforms import InterpolationMode

    def _pil_interp(method):
        if method == 'bicubic':
            return InterpolationMode.BICUBIC
        elif method == 'lanczos':
            return InterpolationMode.LANCZOS
        elif method == 'hamming':
            return InterpolationMode.HAMMING
        else:
            return InterpolationMode.BILINEAR
except:
    from timm.data.transforms import _pil_interp


class TTA(torch.nn.Module):

    def __init__(self, size, scales=[1.0, 1.05, 1.1]):
        super().__init__()
        self.size = size
        self.scales = scales

    def forward(self, img):
        out = []
        cc = transforms.CenterCrop(self.size)
        for scale in self.scales:
            size_ = int(scale * self.size)
            rs = transforms.Resize(size_, interpolation=_pil_interp('bicubic'))
            img_ = rs(img)
            img_ = cc(img_)
            out.append(img_)

        return out

    def __repr__(self) -> str:
        return f'{self.__class__.__name__}(size={self.size}, scale={self.scales})'


def build_loader(config):
    config.defrost()
    dataset_train, config.MODEL.NUM_CLASSES = build_dataset('train', config=config)
    config.freeze()
    print(f'local rank {config.LOCAL_RANK} / global rank {dist.get_rank()}'
          'successfully build train dataset')

    dataset_val, _ = build_dataset('val', config=config)
    print(f'local rank {config.LOCAL_RANK} / global rank {dist.get_rank()}'
          'successfully build val dataset')

    dataset_test, _ = build_dataset('test', config=config)
    print(f'local rank {config.LOCAL_RANK} / global rank {dist.get_rank()}'
          'successfully build test dataset')

    num_tasks = dist.get_world_size()
    global_rank = dist.get_rank()

    if dataset_train is not None:
        if config.DATA.IMG_ON_MEMORY:
            sampler_train = NodeDistributedSampler(dataset_train)
        else:
            if config.DATA.ZIP_MODE and config.DATA.CACHE_MODE == 'part':
                indices = np.arange(dist.get_rank(), len(dataset_train), dist.get_world_size())
                sampler_train = SubsetRandomSampler(indices)
            else:
                sampler_train = torch.utils.data.DistributedSampler(
                    dataset_train,
                    num_replicas=num_tasks,
                    rank=global_rank,
                    shuffle=True)

    if dataset_val is not None:
        if config.TEST.SEQUENTIAL:
            sampler_val = torch.utils.data.SequentialSampler(dataset_val)
        else:
            sampler_val = torch.utils.data.distributed.DistributedSampler(dataset_val, shuffle=False)

    if dataset_test is not None:
        if config.TEST.SEQUENTIAL:
            sampler_test = torch.utils.data.SequentialSampler(dataset_test)
        else:
            sampler_test = torch.utils.data.distributed.DistributedSampler(dataset_test, shuffle=False)

    data_loader_train = torch.utils.data.DataLoader(
        dataset_train,
        sampler=sampler_train,
        batch_size=config.DATA.BATCH_SIZE,
        num_workers=config.DATA.NUM_WORKERS,
        pin_memory=config.DATA.PIN_MEMORY,
        drop_last=True,
        persistent_workers=True) if dataset_train is not None else None

    data_loader_val = torch.utils.data.DataLoader(
        dataset_val,
        sampler=sampler_val,
        batch_size=config.DATA.BATCH_SIZE,
        shuffle=False,
        num_workers=config.DATA.NUM_WORKERS,
        pin_memory=config.DATA.PIN_MEMORY,
        drop_last=False,
        persistent_workers=True) if dataset_val is not None else None

    data_loader_test = torch.utils.data.DataLoader(
        dataset_test,
        sampler=sampler_test,
        batch_size=config.DATA.BATCH_SIZE,
        shuffle=False,
        num_workers=config.DATA.NUM_WORKERS,
        pin_memory=config.DATA.PIN_MEMORY,
        drop_last=False,
        persistent_workers=True) if dataset_test is not None else None

    # setup mixup / cutmix
    mixup_fn = None
    mixup_active = config.AUG.MIXUP > 0 or config.AUG.CUTMIX > 0. or config.AUG.CUTMIX_MINMAX is not None
    if mixup_active:
        mixup_fn = Mixup(mixup_alpha=config.AUG.MIXUP,
                         cutmix_alpha=config.AUG.CUTMIX,
                         cutmix_minmax=config.AUG.CUTMIX_MINMAX,
                         prob=config.AUG.MIXUP_PROB,
                         switch_prob=config.AUG.MIXUP_SWITCH_PROB,
                         mode=config.AUG.MIXUP_MODE,
                         label_smoothing=config.MODEL.LABEL_SMOOTHING,
                         num_classes=config.MODEL.NUM_CLASSES)

    return dataset_train, dataset_val, dataset_test, data_loader_train, \
           data_loader_val, data_loader_test, mixup_fn


def build_loader2(config):
    config.defrost()
    dataset_train, config.MODEL.NUM_CLASSES = build_dataset('train', config=config)
    config.freeze()
    dataset_val, _ = build_dataset('val', config=config)
    dataset_test, _ = build_dataset('test', config=config)

    data_loader_train = torch.utils.data.DataLoader(
        dataset_train,
        shuffle=True,
        batch_size=config.DATA.BATCH_SIZE,
        num_workers=config.DATA.NUM_WORKERS,
        pin_memory=config.DATA.PIN_MEMORY,
        drop_last=True,
        persistent_workers=True) if dataset_train is not None else None

    data_loader_val = torch.utils.data.DataLoader(
        dataset_val,
        batch_size=config.DATA.BATCH_SIZE,
        shuffle=False,
        num_workers=config.DATA.NUM_WORKERS,
        pin_memory=config.DATA.PIN_MEMORY,
        drop_last=False,
        persistent_workers=True) if dataset_val is not None else None

    data_loader_test = torch.utils.data.DataLoader(
        dataset_test,
        batch_size=config.DATA.BATCH_SIZE,
        shuffle=False,
        num_workers=config.DATA.NUM_WORKERS,
        pin_memory=config.DATA.PIN_MEMORY,
        drop_last=False,
        persistent_workers=True) if dataset_test is not None else None

    # setup mixup / cutmix
    mixup_fn = None
    mixup_active = config.AUG.MIXUP > 0 or config.AUG.CUTMIX > 0. or config.AUG.CUTMIX_MINMAX is not None
    if mixup_active:
        mixup_fn = Mixup(mixup_alpha=config.AUG.MIXUP,
                         cutmix_alpha=config.AUG.CUTMIX,
                         cutmix_minmax=config.AUG.CUTMIX_MINMAX,
                         prob=config.AUG.MIXUP_PROB,
                         switch_prob=config.AUG.MIXUP_SWITCH_PROB,
                         mode=config.AUG.MIXUP_MODE,
                         label_smoothing=config.MODEL.LABEL_SMOOTHING,
                         num_classes=config.MODEL.NUM_CLASSES)

    return dataset_train, dataset_val, dataset_test, data_loader_train, \
           data_loader_val, data_loader_test, mixup_fn


def build_dataset(split, config):
    if config.DATA.TRANSFORM == 'build_transform':
        transform = build_transform(split == 'train', config)
    elif config.DATA.TRANSFORM == 'build_transform_for_linear_probe':
        transform = build_transform_for_linear_probe(split == 'train', config)
    else:
        raise NotImplementedError
    print(split, transform)
    dataset = None
    nb_classes = None
    prefix = split
    if config.DATA.DATASET == 'imagenet' or config.DATA.DATASET == 'imagenet-real':
        if prefix == 'train' and not config.EVAL_MODE:
            root = os.path.join(config.DATA.DATA_PATH, 'train')
            dataset = ImageCephDataset(root, 'train',
                                       transform=transform,
                                       on_memory=config.DATA.IMG_ON_MEMORY)
        elif prefix == 'val':
            root = os.path.join(config.DATA.DATA_PATH, 'val')
            dataset = ImageCephDataset(root, 'val', transform=transform)
        nb_classes = 1000
    elif config.DATA.DATASET == 'imagenet22K':
        if prefix == 'train':
            if not config.EVAL_MODE:
                root = config.DATA.DATA_PATH
                dataset = ImageCephDataset(root, 'train',
                                           transform=transform,
                                           on_memory=config.DATA.IMG_ON_MEMORY)
            nb_classes = 21841
        elif prefix == 'val':
            root = os.path.join(config.DATA.DATA_PATH, 'val')
            dataset = ImageCephDataset(root, 'val', transform=transform)
            nb_classes = 1000
    elif config.DATA.DATASET == 'imagenetv2':
        from .imagenetv2 import ImageNetV2Dataset
        if prefix == 'train' and not config.EVAL_MODE:
            print(f'Only test split available for {config.DATA.DATASET}')
        else:
            dataset = ImageNetV2Dataset(variant='matched-frequency',
                                        transform=transform,
                                        location=config.DATA.DATA_PATH)
            nb_classes = 1000
    elif config.DATA.DATASET == 'imagenet_sketch':
        if prefix == 'train' and not config.EVAL_MODE:
            print(f'Only test split available for {config.DATA.DATASET}')
        else:
            dataset = ImageFolder(root=config.DATA.DATA_PATH, transform=transform)
            nb_classes = 1000
    elif config.DATA.DATASET == 'imagenet_a':
        if prefix == 'train' and not config.EVAL_MODE:
            print(f'Only test split available for {config.DATA.DATASET}')
        else:
            dataset = ImageFolder(root=config.DATA.DATA_PATH, transform=transform)
            nb_classes = 1000  # actual number of classes is 200
    elif config.DATA.DATASET == 'imagenet_r':
        if prefix == 'train' and not config.EVAL_MODE:
            print(f'Only test split available for {config.DATA.DATASET}')
        else:
            dataset = ImageFolder(root=config.DATA.DATA_PATH, transform=transform)
            nb_classes = 1000  # actual number of classes is 200
    else:
        raise NotImplementedError(
            f'build_dataset does support {config.DATA.DATASET}')

    return dataset, nb_classes


def build_transform_for_linear_probe(is_train, config):
    # linear probe: weak augmentation
    if is_train:
        transform = transforms.Compose([
            transforms.RandomResizedCrop(
                config.DATA.IMG_SIZE, interpolation=transforms.InterpolationMode.BICUBIC),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize(mean=config.AUG.MEAN, std=config.AUG.STD)
        ])
    else:
        transform = transforms.Compose([
            transforms.Resize(
                config.DATA.IMG_SIZE, interpolation=transforms.InterpolationMode.BICUBIC),
            transforms.CenterCrop(config.DATA.IMG_SIZE),
            transforms.ToTensor(),
            transforms.Normalize(mean=config.AUG.MEAN, std=config.AUG.STD)
        ])
    return transform


def build_transform(is_train, config):
    resize_im = config.DATA.IMG_SIZE > 32
    if is_train:
        # this should always dispatch to transforms_imagenet_train
        transform = create_transform(
            input_size=config.DATA.IMG_SIZE,
            is_training=True,
            color_jitter=config.AUG.COLOR_JITTER
            if config.AUG.COLOR_JITTER > 0 else None,
            auto_augment=config.AUG.AUTO_AUGMENT
            if config.AUG.AUTO_AUGMENT != 'none' else None,
            re_prob=config.AUG.REPROB,
            re_mode=config.AUG.REMODE,
            re_count=config.AUG.RECOUNT,
            interpolation=config.DATA.INTERPOLATION,
        )
        if not resize_im:
            # replace RandomResizedCropAndInterpolation with
            # RandomCrop
            transform.transforms[0] = transforms.RandomCrop(config.DATA.IMG_SIZE, padding=4)

        return transform

    t = []
    if resize_im:
        if config.TEST.CROP:
            size = int(1.0 * config.DATA.IMG_SIZE)
            t.append(
                transforms.Resize(size, interpolation=_pil_interp(config.DATA.INTERPOLATION)),
                # to maintain same ratio w.r.t. 224 images
            )
            t.append(transforms.CenterCrop(config.DATA.IMG_SIZE))
        elif config.AUG.RANDOM_RESIZED_CROP:
            t.append(
                transforms.RandomResizedCrop(
                    (config.DATA.IMG_SIZE, config.DATA.IMG_SIZE),
                    interpolation=_pil_interp(config.DATA.INTERPOLATION)))
        else:
            t.append(
                transforms.Resize(
                    (config.DATA.IMG_SIZE, config.DATA.IMG_SIZE),
                    interpolation=_pil_interp(config.DATA.INTERPOLATION)))
    t.append(transforms.ToTensor())
    t.append(transforms.Normalize(config.AUG.MEAN, config.AUG.STD))

    return transforms.Compose(t)