README_zh.md 42.8 KB
Newer Older
wanglch's avatar
wanglch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
<div align="center">

# <img width="60" alt="image" src="https://github.com/OpenGVLab/InternVL/assets/47669167/7037290e-f474-4d11-b90f-1d8316087bf8"> InternVL家族:通过开源组件缩小与商业多模态模型的差距 —— GPT-4o的开源替代方案

[\[🆕 博客\]](https://internvl.github.io/blog/)  [\[🚀 InternVL2 博客\]](https://internvl.github.io/blog/2024-07-02-InternVL-2.0/)  [\[🤗 HF 对话Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL) [\[🗨️ 对话Demo\]](https://internvl.opengvlab.com/)  [\[🌐 API\]](./document/How_to_use_InternVL_API.md)    [\[🚀 快速开始\]](#使用-huggingface-快速开始)

[\[📜 InternVL 1.0 论文\]](https://arxiv.org/abs/2312.14238) [\[📜 InternVL 1.5 报告\]](https://arxiv.org/abs/2404.16821)  [\[📖 1.0 中文解读\]](https://zhuanlan.zhihu.com/p/702946079) [\[📖 1.5 中文解读\]](https://zhuanlan.zhihu.com/p/699439759)  [\[📖 2.0 中文解读\]](https://zhuanlan.zhihu.com/p/706547971)

[Switch to the English version (切换至中文版)](/README.md)

<a href="https://trendshift.io/repositories/9803" target="_blank"><img src="https://trendshift.io/api/badge/repositories/9803" alt="OpenGVLab%2FInternVL | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
<img height="55" alt="image" src="https://github.com/user-attachments/assets/bd62ab46-f0ea-40c6-ab10-7fde671716cc">

![opencompass](https://github.com/user-attachments/assets/7ce93c05-84ae-4997-a480-53897d1d3a1c)

</div>

## 最新消息 🚀🚀🚀

- `2024/07/18`: 🔥🔥 InternVL2-40B 在 [Video-MME](https://github.com/BradyFU/Video-MME) 数据集中实现了开源模型中的 SOTA 性能,当输入 16 帧时得分为 61.2,输入 32 帧时得分为 64.4,大幅领先其它开源模型,是最接近 GPT-4o mini 的开源模型。
- `2024/07/18`: 🔥 InternVL2-Pro 在 [DocVQA](https://rrc.cvc.uab.es/?ch=17&com=evaluation&task=1)[InfoVQA](https://rrc.cvc.uab.es/?ch=17&com=evaluation&task=3) 的基准测试中实现了 SOTA 性能。
- `2024/07/04`: 🚀 我们发布了 InternVL2 系列模型。InternVL2-Pro 在 MMMU 基准测试中达到了 62.0% 的准确率,实现了与 GPT-4o 等领先闭源商业模型比肩的性能。该模型的免费 API 可以通过填写 ([英文申请表](https://docs.google.com/forms/d/e/1FAIpQLSfMCzhPr1OOEKau_6jwTU0EiZMSFckDo-HMlc_hUudhF_97rw/viewform?usp=sf_link)) / ([中文申请表](https://wj.qq.com/s2/14910502/25a4/)) 来申请。其它模型可在 [HF 链接](https://huggingface.co/collections/OpenGVLab/internvl-20-667d3961ab5eb12c7ed1463e) 中下载。
- `2024/06/19`: 我们提出了 Needle In A Multimodal Haystack ([MM-NIAH](https://github.com/OpenGVLab/MM-NIAH)),这是第一个针对模型关于长多模态文档理解能力的评测基准。
- `2024/05/30`: 我们发布了 [ShareGPT-4o](https://sharegpt4o.github.io/),这是一个大规模、高质量的多模态数据集。我们计划开源一批使用 GPT-4o 精心标注的数据,包括 200K 条图像详细描述、10K 条视频详细描述,以及 10K 条音频详细描述。
- `2024/05/29`: 我们开源了 Mini-InternVL 系列,包括以下两个对话模型:[Mini-InternVL-Chat-2B-V1-5](https://huggingface.co/OpenGVLab/Mini-InternVL-Chat-2B-V1-5)[Mini-InternVL-Chat-4B-V1-5](https://huggingface.co/OpenGVLab/Mini-InternVL-Chat-4B-V1-5)。这些模型在极小的尺寸下实现了令人印象深刻的性能:2B 模型以 8% 的模型尺寸实现了 80% 的性能,4B 模型以 16% 的模型尺寸实现了 90% 的性能。更多细节请查看我们的[博客](https://internvl.github.io/blog/2024-05-25-Mini-InternVL-1.5/)
- `2024/05/28`: 感谢 [lmdeploy](https://github.com/InternLM/lmdeploy) 团队提供的 AWQ 量化支持。InternVL 1.5 的 4-bit 模型发布在 [OpenGVLab/InternVL-Chat-V1-5-AWQ](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-5-AWQ)
- `2024/05/13`: InternVL 1.0 现在可以作为扩散模型的 [文本编码器](https://huggingface.co/OpenGVLab/InternVL-14B-224px),支持全球超过 110 种语言的多语言生成。详情请看 [MuLan](https://github.com/mulanai/MuLan)
- `2024/04/18`: InternVL-Chat-V1-5 已经在 [HuggingFace](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-5) 发布,在 MMMU、DocVQA、ChartQA、MathVista 等各种基准测试中,性能接近 GPT-4V 和 Gemini Pro。
- `2024/02/27`: InternVL 已被 CVPR 2024 (Oral) 接收!🎉
- `2024/02/24`: InternVL-Chat 系列模型已经接入 [VLMEvalKit](https://github.com/open-compass/VLMEvalKit) 评测框架。
- `2024/02/21`: [InternVL-Chat-V1-2-Plus](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-2-Plus) 在 MathVista(59.9)、MMBench(83.8)和 MMVP(58.7)上实现了 SOTA 性能。详情请看我们的[博客](https://internvl.github.io/blog/2024-02-21-InternVL-1.2/)
- `2024/02/12`: InternVL-Chat-V1-2 已经发布,它在 MMMU 验证集上达到了 51.6,在 MMBench 测试集上达到了 82.3。 更多信息请参考我们的[博客](https://internvl.github.io/blog/2024-02-21-InternVL-1.2/)以及 [SFT 数据](./internvl_chat#prepare-training-datasets)。该模型已经在 [HuggingFace](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-2) 发布,训练、测评的数据和脚本均已开源。
- `2024/01/24`: InternVL-Chat-V1-1 已经发布,它支持中文对话,并具备强大的 OCR 能力,详情请看[这里](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-1)
- `2024/01/16`: 我们发布了 [定制的 mmcv/mmsegmentation/mmdetection 代码库](https://github.com/OpenGVLab/InternVL-MMDetSeg),集成了 DeepSpeed,可以用于训练检测和分割大模型。

## TODO 列表

- [ ] 支持 vLLM 和 Ollama
- [ ] 使用 readthedocs 重新构建文档
- [x] 支持使用 LoRA 微调不同的 LLMs
- [ ] 在 Demo 中支持视频和 PDF 输入
- [ ] 发布集成 VisionLLMv2 的 InternVL2
- [x] 发布 InternVL2 的 `requirements.txt`
- [x] 发布 InternVL2 系列的训练 / 评估代码
- [x] 发布 InternVL1.5 和 InternVL2 的 Streamlit 网页 UI

## 使用文档

- 安装

  - 如何搭建运行环境?  [\[link\]](./INSTALLATION.md) [\[requirements.txt\]](./requirements.txt)

- 训练或微调

  - 如何复现 InternVL-Chat-V1-2 的SFT阶段? [\[link\]](./internvl_chat#start-training)
  - 如何在自定义数据集上微调 InternVL-Chat-V1-2? [\[link\]](./document/How_to_finetune_internvl_chat_v1_2_on_a_custom_dataset.md)
  - 如何在自定义数据集上微调 Mini-InternVL-Chat 系列? [\[link\]](./document/How_to_finetune_mini_internvl_chat_v1_5_on_a_custom_dataset.md)

- Benchmark 测评

  > 由于此代码库与 VLMEvalKit 之间存在细微的实现差异,在测试同一模型时,性能指标可能会出现轻微差异。

  - 如何评测 InternVL-Chat-V1-5? [\[link\]](./document/How_to_evaluate_internvl_chat_v1_5.md)
  - 如何使用 VLMEvalKit 评测 InternVL-Chat-V1-5? (推荐) [\[link\]](./document/How_to_evaluate_internvl_chat_v1_5_using_vlmevalkit.md)
  - 如何使用 VLMEvalKit 评测 Mini-InternVL-Chat-2B-V1-5? (推荐) [\[link\]](./document/How_to_evaluate_mini_internvl_chat_2b_v1_5_using_vlmevalkit.md)
  - 如何使用 VLMEvalKit 评测 Mini-InternVL-Chat-4B-V1-5? (推荐) [\[link\]](./document/How_to_evaluate_mini_internvl_chat_4b_v1_5_using_vlmevalkit.md)

- 模型部署

  - 如何使用 InternVL API? [\[link\]](./document/How_to_use_InternVL_API.md)
  - 如何部署本地的 demo? [\[link\]](./document/How_to_deploy_a_local_demo.md)
  - 如何用 Nvidia V100 GPU 运行 InternVL-1.5 8bit? [\[link\]](https://github.com/OpenGVLab/InternVL/issues/144) [\[中文教程\]](https://zhuanlan.zhihu.com/p/697188143)
  - 如何进行批量推理? [\[link\]](./README.md?plain=1#L849)

## 和 SOTA 多模态大模型对比

![waic_performance](https://github.com/user-attachments/assets/7b24ad6c-45dd-4bcd-aa77-79da1ec856ee)

## 模型库

#### 多模态大语言模型 (InternVL 2.0)

<table>
  <tr>
    <th>Model Name</th>
    <th>Vision Part</th>
    <th>Language Part</th>
    <th>HF&nbsp;Link</th>
    <th>MS&nbsp;Link</th>
    <th>Document</th>
  </tr>
  <tr>
    <td>InternVL2&#8209;1B</td>
    <td><a href="https://huggingface.co/OpenGVLab/InternViT-300M-448px">InternViT&#8209;300M&#8209;448px</a></td>
    <td><a href="https://huggingface.co/Qwen/Qwen2-0.5B-Instruct">Qwen2&#8209;0.5B&#8209;Instruct</a></td>
    <td><a href="https://huggingface.co/OpenGVLab/InternVL2-1B">🤗 link</a></td>
    <td><a href="https://modelscope.cn/models/OpenGVLab/InternVL2-1B">🤖 link</a></td>
    <td><a href="https://huggingface.co/OpenGVLab/InternVL2-1B#quick-start">📖 doc</a></td>
  </tr>
  <tr>
    <td>InternVL2&#8209;2B</td>
    <td><a href="https://huggingface.co/OpenGVLab/InternViT-300M-448px">InternViT&#8209;300M&#8209;448px</a></td>
    <td><a href="https://huggingface.co/internlm/internlm2-chat-1_8b">internlm2&#8209;chat&#8209;1&#8209;8b</a></td>
    <td><a href="https://huggingface.co/OpenGVLab/InternVL2-2B">🤗 link</a></td>
    <td><a href="https://modelscope.cn/models/OpenGVLab/InternVL2-2B">🤖 link</a></td>
    <td><a href="https://huggingface.co/OpenGVLab/InternVL2-2B#quick-start">📖 doc</a></td>
  </tr>
  <tr>
    <td>InternVL2&#8209;4B</td>
    <td><a href="https://huggingface.co/OpenGVLab/InternViT-300M-448px">InternViT&#8209;300M&#8209;448px</a></td>
    <td><a href="https://huggingface.co/microsoft/Phi-3-mini-128k-instruct">Phi&#8209;3&#8209;mini&#8209;128k&#8209;instruct</a></td>
    <td><a href="https://huggingface.co/OpenGVLab/InternVL2-4B">🤗 link</a></td>
    <td><a href="https://modelscope.cn/models/OpenGVLab/InternVL2-4B">🤖 link</a></td>
    <td><a href="https://huggingface.co/OpenGVLab/InternVL2-4B#quick-start">📖 doc</a></td>
  </tr>
  <tr>
    <td>InternVL2&#8209;8B</td>
    <td><a href="https://huggingface.co/OpenGVLab/InternViT-300M-448px">InternViT&#8209;300M&#8209;448px</a></td>
    <td><a href="https://huggingface.co/internlm/internlm2_5-7b-chat">internlm2_5&#8209;7b&#8209;chat</a></td>
    <td><a href="https://huggingface.co/OpenGVLab/InternVL2-8B">🤗 link</a></td>
    <td><a href="https://modelscope.cn/models/OpenGVLab/InternVL2-8B">🤖 link</a></td>
    <td><a href="https://huggingface.co/OpenGVLab/InternVL2-8B#quick-start">📖 doc</a></td>
  </tr>
  <tr>
    <td>InternVL2&#8209;26B</td>
    <td><a href="https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-5">InternViT&#8209;6B&#8209;448px&#8209;V1&#8209;5</a></td>
    <td><a href="https://huggingface.co/internlm/internlm2-chat-20b">internlm2&#8209;chat&#8209;20b</a></td>
    <td><a href="https://huggingface.co/OpenGVLab/InternVL2-26B">🤗 link</a></td>
    <td><a href="https://modelscope.cn/models/OpenGVLab/InternVL2-26B">🤖 link</a></td>
    <td><a href="https://huggingface.co/OpenGVLab/InternVL2-26B#quick-start">📖 doc</a></td>
  </tr>
  <tr>
    <td>InternVL2&#8209;40B</td>
    <td><a href="https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-5">InternViT&#8209;6B&#8209;448px&#8209;V1&#8209;5</a></td>
    <td><a href="https://huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B">Nous&#8209;Hermes&#8209;2&#8209;Yi&#8209;34B</a></td>
    <td><a href="https://huggingface.co/OpenGVLab/InternVL2-40B">🤗 link</a></td>
    <td><a href="https://modelscope.cn/models/OpenGVLab/InternVL2-40B">🤖 link</a></td>
    <td><a href="https://huggingface.co/OpenGVLab/InternVL2-40B#quick-start">📖 doc</a></td>
  </tr>
  <tr>
    <td>InternVL2-Llama3-76B</td>
    <td><a href="https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-5">InternViT&#8209;6B&#8209;448px&#8209;V1&#8209;5</a></td>
    <td><a href="https://huggingface.co/NousResearch/Hermes-2-Theta-Llama-3-70B">Hermes‑2‑Theta‑<br>Llama‑3‑70B</a></td>
    <td><a href="https://huggingface.co/OpenGVLab/InternVL2-Llama3-76B">🤗 link</a></td>
    <td><a href="https://modelscope.cn/models/OpenGVLab/InternVL2-Llama3-76B">🤖 link</a></td>
    <td><a href="https://huggingface.co/OpenGVLab/InternVL2-Llama3-76B#quick-start">📖 doc</a></td>
  </tr>
</table>

#### InternVL2-Pro API

我们诚挚邀请大家将 InternVL2-Pro 的 API 用于学术研究。为了更好地管理,请提交[英文申请表](https://docs.google.com/forms/d/e/1FAIpQLSfMCzhPr1OOEKau_6jwTU0EiZMSFckDo-HMlc_hUudhF_97rw/viewform?usp=sf_link)/[中文申请表](https://wj.qq.com/s2/14910502/25a4/)以获得免费 API 访问权限。

#### 多模态大语言模型 (InternVL 1.0-1.5)

<table>
  <tr>
    <th>Model</th>
    <th>Date</th>
    <th>HF&nbsp;Link</th>
    <th>MS&nbsp;Link</th>
    <th>Note</th>
  </tr>
  <tr>
    <td>Mini&#8209;InternVL&#8209;Chat&#8209;4B&#8209;V1&#8209;5</td>
    <td>2024.05.28</td>
    <td><a href="https://huggingface.co/OpenGVLab/Mini-InternVL-Chat-4B-V1-5">🤗 link</a></td>
    <td><a href="https://modelscope.cn/models/OpenGVLab/Mini-InternVL-Chat-4B-V1-5">🤖 link</a></td>
    <td>🚀🚀 16% 的模型大小, 90% 的性能</td>
  </tr>
  <tr>
    <td>Mini&#8209;InternVL&#8209;Chat&#8209;2B&#8209;V1&#8209;5</td>
    <td>2024.05.19</td>
    <td><a href="https://huggingface.co/OpenGVLab/Mini-InternVL-Chat-2B-V1-5">🤗 link</a></td>
    <td><a href="https://modelscope.cn/models/OpenGVLab/Mini-InternVL-Chat-2B-V1-5">🤖 link</a></td>
    <td>🚀 8% 的模型大小, 80% 的性能</td>
  </tr>
  <tr>
    <td>InternVL&#8209;Chat&#8209;V1&#8209;5</td>
    <td>2024.04.18</td>
    <td><a href="https://huggingface.co/OpenGVLab/InternVL-Chat-V1-5">🤗 link</a></td>
    <td><a href="https://modelscope.cn/models/OpenGVLab/InternVL-Chat-V1-5">🤖 link</a></td>
    <td>支持 4K 图像;超强的 OCR 能力;在 MMMU、DocVQA、ChartQA、MathVista 等各种基准测试中,性能接近 GPT-4V 和 Gemini Pro
  </tr>
  <tr>
    <td>InternVL&#8209;Chat&#8209;V1&#8209;2&#8209;Plus</td>
    <td>2024.02.21</td>
    <td><a href="https://huggingface.co/OpenGVLab/InternVL-Chat-V1-2-Plus">🤗 link</a></td>
    <td><a href="https://modelscope.cn/models/OpenGVLab/InternVL-Chat-V1-2-Plus">🤖 link</a></td>
    <td>更多的 SFT 数据和更强的性能</td>
  </tr>
  <tr>
    <td>InternVL&#8209;Chat&#8209;V1&#8209;2</td>
    <td>2024.02.11</td>
    <td><a href="https://huggingface.co/OpenGVLab/InternVL-Chat-V1-2">🤗 link</a></td>
    <td><a href="https://modelscope.cn/models/OpenGVLab/InternVL-Chat-V1-2">🤖 link</a></td>
    <td>将 LLM 扩展到 34B</td>
  </tr>
  <tr>
    <td>InternVL&#8209;Chat&#8209;V1&#8209;1</td>
    <td>2024.01.24</td>
    <td><a href="https://huggingface.co/OpenGVLab/InternVL-Chat-V1-1">🤗 link</a></td>
    <td><a href="https://modelscope.cn/models/OpenGVLab/InternVL-Chat-V1-1">🤖 link</a></td>
    <td>支持中文和更强的 OCR 能力</td>
  </tr>
  <tr>
    <td>InternVL&#8209;Chat&#8209;19B</td>
    <td>2023.12.25</td>
    <td><a href="https://huggingface.co/OpenGVLab/InternVL-Chat-ViT-6B-Vicuna-13B">🤗 link</a></td>
    <td><a href="https://modelscope.cn/models/OpenGVLab/InternVL-Chat-ViT-6B-Vicuna-13B">🤖 link</a></td>
    <td>英语多模态对话</td>
  </tr>
  <tr>
    <td>InternVL&#8209;Chat&#8209;13B</td>
    <td>2023.12.25</td>
    <td><a href="https://huggingface.co/OpenGVLab/InternVL-Chat-ViT-6B-Vicuna-7B">🤗 link</a></td>
    <td><a href="https://modelscope.cn/models/OpenGVLab/InternVL-Chat-ViT-6B-Vicuna-7B">🤖 link</a></td>
    <td>英语多模态对话</td>
  </tr>
</table>

#### 视觉基础模型 (InternVL 1.0-1.5)

<table>
  <tr>
    <th>Model</th>
    <th>Date</th>
    <th>HF&nbsp;Link</th>
    <th>MS&nbsp;Link</th>
    <th>Note</th>
  </tr>
  <tr>
    <td>InternViT&#8209;300M&#8209;448px</td>
    <td>2024.05.25</td>
    <td><a href="https://huggingface.co/OpenGVLab/InternViT-300M-448px">🤗 link</a></td>
    <td><a href="https://modelscope.cn/models/OpenGVLab/InternViT-300M-448px">🤖 link</a></td>
    <td>蒸馏的小型视觉基础模型,具有 300M 参数(🔥新)</td>
  </tr>
  <tr>
    <td>InternViT&#8209;6B&#8209;448px&#8209;V1&#8209;5</td>
    <td>2024.04.20</td>
    <td><a href="https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-5">🤗 link</a></td>
    <td><a href="https://modelscope.cn/models/OpenGVLab/InternViT-6B-448px-V1-5">🤖 link</a></td>
    <td>通过增量预训练支持动态分辨率和超强的 OCR 特征提取能力(🔥新)</td>
  </tr>
  <tr>
    <td>InternViT&#8209;6B&#8209;448px&#8209;V1&#8209;2</td>
    <td>2024.02.11</td>
    <td><a href="https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-2">🤗 link</a></td>
    <td><a href="https://modelscope.cn/models/OpenGVLab/InternViT-6B-448px-V1-2">🤖 link</a></td>
    <td>通过增量预训练支持 448 分辨率</td>
  </tr>
  <tr>
    <td>InternViT&#8209;6B&#8209;448px&#8209;V1&#8209;0</td>
    <td>2024.01.30</td>
    <td><a href="https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-0">🤗 link</a></td>
    <td><a href="https://modelscope.cn/models/OpenGVLab/InternViT-6B-448px-V1-0">🤖 link</a></td>
    <td>通过增量预训练支持 448 分辨率</td>
  </tr>
  <tr>
    <td>InternViT&#8209;6B&#8209;224px</td>
    <td>2023.12.22</td>
    <td><a href="https://huggingface.co/OpenGVLab/InternViT-6B-224px">🤗 link</a></td>
    <td><a href="https://modelscope.cn/models/OpenGVLab/InternViT-6B-224px">🤖 link</a></td>
    <td>InternViT-6B 的第一个版本,提取自 InternVL‑14B‑224px</td>
  </tr>
</table>

#### 视觉语言基础模型 (InternVL 1.0)

<table>
  <tr>
    <th>Model</th>
    <th>Date</th>
    <th>HF&nbsp;Link</th>
    <th>MS&nbsp;Link</th>
    <th>Note</th>
  </tr>
  <tr>
    <td>InternVL&#8209;14B&#8209;224px</td>
    <td>2023.12.22</td>
    <td><a href="https://huggingface.co/OpenGVLab/InternVL-14B-224px">🤗 link</a></td>
    <td><a href="https://modelscope.cn/models/OpenGVLab/InternVL-14B-224px">🤖 link</a></td>
    <td>视觉-语言基础模型,InternViT-6B + QLLaMA,可以用于类似 CLIP 的图文检索</td>
  </tr>
</table>

## InternVL 可以做什么?

<details>
  <summary>视觉感知 (点击展开)</summary>

- 线性探针图像分类 [\[查看详情\]](./classification#-evaluation)

  ViT-22B uses the private JFT-3B dataset.

  | method              | #param | IN-1K | IN-ReaL | IN-V2 | IN-A | IN-R | IN-Sketch |
  | ------------------- | :----: | :---: | :-----: | :---: | :--: | :--: | :-------: |
  | OpenCLIP-G          |  1.8B  | 86.2  |  89.4   | 77.2  | 63.8 | 87.8 |   66.4    |
  | DINOv2-g            |  1.1B  | 86.5  |  89.6   | 78.4  | 75.9 | 78.8 |   62.5    |
  | EVA-01-CLIP-g       |  1.1B  | 86.5  |  89.3   | 77.4  | 70.5 | 87.7 |   63.1    |
  | MAWS-ViT-6.5B       |  6.5B  | 87.8  |    -    |   -   |  -   |  -   |     -     |
  | ViT-22B\*           | 21.7B  | 89.5  |  90.9   | 83.2  | 83.8 | 87.4 |     -     |
  | InternViT-6B (ours) |  5.9B  | 88.2  |  90.4   | 79.9  | 77.5 | 89.8 |   69.1    |

- 语义分割 [\[查看详情\]](./segmentation#-evaluation)

  | method                | decoder | #param (train/total) | crop size | mIoU         |
  | --------------------- | :-----: | :------------------: | :-------: | ------------ |
  | OpenCLIP-G (frozen)   | Linear  |     0.3M / 1.8B      |    512    | 39.3         |
  | ViT-22B (frozen)      | Linear  |     0.9M / 21.7B     |    504    | 34.6         |
  | InternViT-6B (frozen) | Linear  |     0.5M / 5.9B      |    504    | 47.2 (+12.6) |
  | ViT-22B (frozen)      | UperNet |     0.8B / 22.5B     |    504    | 52.7         |
  | InternViT-6B (frozen) | UperNet |     0.4B / 6.3B      |    504    | 54.9 (+2.2)  |
  | ViT-22B               | UperNet |    22.5B / 22.5B     |    504    | 55.3         |
  | InternViT-6B          | UperNet |     6.3B / 6.3B      |    504    | 58.9 (+3.6)  |

- 零样本图像分类 [\[查看详情\]](./clip_benchmark#imagenet-variants-and-objectnet)

  | method            | IN-1K | IN-A | IN-R | IN-V2 | IN-Sketch | ObjectNet |
  | ----------------- | :---: | :--: | :--: | :---: | :-------: | :-------: |
  | OpenCLIP-G        | 80.1  | 69.3 | 92.1 | 73.6  |   68.9    |   73.0    |
  | EVA-02-CLIP-E+    | 82.0  | 82.1 | 94.5 | 75.7  |   71.6    |   79.6    |
  | ViT-22B\*         | 85.9  | 90.1 | 96.0 | 80.9  |     -     |   87.6    |
  | InternVL-C (ours) | 83.2  | 83.8 | 95.5 | 77.3  |   73.9    |   80.6    |

- 多语言零样本图像分类 [\[查看详情\]](./clip_benchmark#multilingual-imagenet-1k)

  EN: English, ZH: Chinese, JP: Japanese, Ar: Arabic, IT: Italian

  | method            | IN-1K (EN) | IN-1K (ZH) | IN-1K (JP) | IN-1K (AR) | IN-1K (IT) |
  | ----------------- | :--------: | :--------: | :--------: | :--------: | :--------: |
  | Taiyi-CLIP-ViT-H  |     -      |    54.4    |     -      |     -      |     -      |
  | WuKong-ViT-L-G    |     -      |    57.5    |     -      |     -      |     -      |
  | CN-CLIP-ViT-H     |     -      |    59.6    |     -      |     -      |     -      |
  | AltCLIP-ViT-L     |    74.5    |    59.6    |     -      |     -      |     -      |
  | EVA-02-CLIP-E+    |    82.0    |     -      |     -      |     -      |    41.2    |
  | OpenCLIP-XLM-R-H  |    77.0    |    55.7    |    53.1    |    37.0    |    56.8    |
  | InternVL-C (ours) |    83.2    |    64.5    |    61.5    |    44.9    |    65.7    |

- 零样本视频分类

  | method            | #frame | K400 | K600 | K700 |
  | ----------------- | :----: | :--: | :--: | :--: |
  | OpenCLIP-G        |   1    | 65.9 | 66.1 | 59.2 |
  | EVA-02-CLIP-E+    |   1    | 69.8 | 69.3 | 63.4 |
  | InternVL-C (ours) |   1    | 71.0 | 71.3 | 65.7 |
  | ViCLIP            |   8    | 75.7 | 73.5 | 66.4 |
  | InternVL-C (ours) |   8    | 79.4 | 78.8 | 71.5 |

</details>

<details>
  <summary>跨模态检索 (点击展开)</summary>

- 英语零样本图文检索 [\[查看详情\]](./clip_benchmark#flickr30k--coco)

  <table>
    <tr align=center>
        <td rowspan="3" align=left><b>model</b></td>
        <td colspan="6" align=center><b>Flickr30K</b></td>
        <td colspan="6" align=center><b>COCO</b></td>
        <td rowspan="3" align=center><b>avg</b></td>

  </tr>
     <tr align=center>
        <td colspan="3" align=center><b>image-to-text</b></td>
        <td colspan="3" align=center><b>text-to-image</b></td>
         <td colspan="3" align=center><b>image-to-text</b></td>
        <td colspan="3" align=center><b>text-to-image</b></td>
     </tr>
     <tr>
        <td>R@1</td>
        <td>R@5</td>
        <td>R@10</td>
        <td>R@1</td>
        <td>R@5</td>
        <td>R@10</td>
        <td>R@1</td>
        <td>R@5</td>
        <td>R@10</td>
        <td>R@1</td>
        <td>R@5</td>
        <td>R@10</td>
     </tr>

  <tr align=center>
        <td align=left>OpenCLIP-G</td>
        <td>92.9</td>
        <td>99.3</td>
        <td>99.8</td>
        <td>79.5</td>
        <td>95.0</td>
        <td>97.1</td>
        <td>67.3</td>
        <td>86.9</td>
        <td>92.6</td>
        <td>51.4</td>
        <td>74.9</td>
        <td>83.0</td>
        <td>85.0</td>
     </tr>
  <tr align=center>
        <td align=left>EVA-02-CLIP-E+</td>
        <td>93.9</td>
        <td>99.4</td>
        <td>99.8</td>
        <td>78.8</td>
        <td>94.2</td>
        <td>96.8</td>
        <td>68.8</td>
        <td>87.8</td>
        <td>92.8</td>
        <td>51.1</td>
        <td>75.0</td>
        <td>82.7</td>
        <td>85.1</td>
     </tr>
    <tr align=center>
        <td align=left>EVA-CLIP-8B</td>
        <td>95.6</td>
        <td>99.6</td>
        <td>99.9</td>
        <td>80.8</td>
        <td>95.5</td>
        <td>97.6</td>
        <td>70.3</td>
        <td>89.3</td>
        <td>93.9</td>
        <td>53.0</td>
        <td>76.0</td>
        <td>83.4</td>
        <td>86.2</td>
     </tr>
  <tr align=center>
        <td align=left>InternVL-C (ours)</td>
        <td>94.7</td>
        <td>99.6</td>
        <td>99.9</td>
        <td>81.7</td>
        <td>96.0</td>
        <td>98.2</td>
        <td>70.6</td>
        <td>89.0</td>
        <td>93.5</td>
        <td>54.1</td>
        <td>77.3</td>
        <td>84.6</td>
        <td>86.6</td>
     </tr>
  <tr align=center>
        <td align=left>InternVL-G (ours)</td>
        <td>95.7</td>
        <td>99.7</td>
        <td>99.9</td>
        <td>85.0</td>
        <td>97.0</td>
        <td>98.6</td>
        <td>74.9</td>
        <td>91.3</td>
        <td>95.2</td>
        <td>58.6</td>
        <td>81.3</td>
        <td>88.0</td>
        <td>88.8</td>
     </tr>

  </table>

- 中文零样本图文检索 [\[查看详情\]](./clip_benchmark#flickr30k-cn--coco-cn)

  <table>
    <tr  align=center>
        <td rowspan="3" align=left><b>model</b></td>
        <td colspan="6" align=center><b>Flickr30K-CN</b></td>
        <td colspan="6" align=center><b>COCO-CN</b></td>
        <td rowspan="3" align=center><b>avg</b></td>

  </tr>
     <tr  align=center>
        <td colspan="3" align=center><b>image-to-text</b></td>
        <td colspan="3" align=center><b>text-to-image</b></td>
         <td colspan="3" align=center><b>image-to-text</b></td>
        <td colspan="3" align=center><b>text-to-image</b></td>
     </tr>
     <tr>
        <td>R@1</td>
        <td>R@5</td>
        <td>R@10</td>
        <td>R@1</td>
        <td>R@5</td>
        <td>R@10</td>
        <td>R@1</td>
        <td>R@5</td>
        <td>R@10</td>
        <td>R@1</td>
        <td>R@5</td>
        <td>R@10</td>
     </tr>

  <tr align=center>
        <td align=left>CN-CLIP-ViT-H</td>
        <td>81.6</td>
        <td>97.5</td>
        <td>98.8</td>
        <td>71.2</td>
        <td>91.4</td>
        <td>95.5</td>
        <td>63.0</td>
        <td>86.6</td>
        <td>92.9</td>
        <td>69.2</td>
        <td>89.9</td>
        <td>96.1</td>
        <td>86.1</td>
     </tr>

  <tr align=center>
        <td align=left>OpenCLIP-XLM-R-H</td>
        <td>86.1</td>
        <td>97.5</td>
        <td>99.2</td>
        <td>71.0</td>
        <td>90.5</td>
        <td>94.9</td>
        <td>70.0</td>
        <td>91.5</td>
        <td>97.0</td>
        <td>66.1</td>
        <td>90.8</td>
        <td>96.0</td>
        <td>87.6</td>
     </tr>

  <tr align=center>
        <td align=left>InternVL-C (ours)</td>
        <td>90.3</td>
        <td>98.8</td>
        <td>99.7</td>
        <td>75.1</td>
        <td>92.9</td>
        <td>96.4</td>
        <td>68.8</td>
        <td>92.0</td>
        <td>96.7</td>
        <td>68.9</td>
        <td>91.9</td>
        <td>96.5</td>
        <td>89.0</td>
     </tr>
  <tr align=center>
        <td align=left>InternVL-G (ours)</td>
        <td>92.9</td>
        <td>99.4</td>
        <td>99.8</td>
        <td>77.7</td>
        <td>94.8</td>
        <td>97.3</td>
        <td>71.4</td>
        <td>93.9</td>
        <td>97.7</td>
        <td>73.8</td>
        <td>94.4</td>
        <td>98.1</td>
        <td>90.9</td>
     </tr>

  </table>

- 多语言零样本图文对检索 [\[查看详情\]](./clip_benchmark#xtd)

  | method            |  EN  |  ES  |  FR  |  ZH  |  IT  |  KO  |  RU  |  JP  | average |
  | ----------------- | :--: | :--: | :--: | :--: | :--: | :--: | :--: | :--: | :-----: |
  | AltCLIP           | 95.4 | 94.1 | 92.9 | 95.1 | 94.2 | 94.4 | 91.8 | 91.7 |  93.7   |
  | OpenCLIP-XLM-R-H  | 97.3 | 96.1 | 94.5 | 94.7 | 96.0 | 90.2 | 93.9 | 94.0 |  94.6   |
  | InternVL-C (ours) | 97.3 | 95.7 | 95.1 | 95.6 | 96.0 | 92.2 | 93.3 | 95.5 |  95.1   |
  | InternVL-G (ours) | 98.6 | 97.7 | 96.5 | 96.7 | 96.9 | 95.1 | 94.8 | 96.1 |  96.6   |

</details>

<details>
  <summary>多模态对话</summary>

请看 ["和SOTA多模态大模型对比"](#和-sota-多模态大模型对比)

</details>

## 使用 HuggingFace 快速开始

<details>
  <summary>使用 InternViT-6B 提取视觉特征 (点击展开)</summary>

```python
import torch
from PIL import Image
from transformers import AutoModel, CLIPImageProcessor

model = AutoModel.from_pretrained(
    'OpenGVLab/InternViT-6B-448px-V1-5',
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True).cuda().eval()

image = Image.open('./examples/image1.jpg').convert('RGB')

image_processor = CLIPImageProcessor.from_pretrained('OpenGVLab/InternViT-6B-448px-V1-5')

pixel_values = image_processor(images=image, return_tensors='pt').pixel_values
pixel_values = pixel_values.to(torch.bfloat16).cuda()

outputs = model(pixel_values)
```

</details>

<details>
  <summary>使用 InternVL-C(ontrastive) 和 InternVL-G(enerative) 进行跨模态检索 (点击展开)</summary>

```python
import torch
from PIL import Image
from transformers import AutoModel, CLIPImageProcessor
from transformers import AutoTokenizer


model = AutoModel.from_pretrained(
    'OpenGVLab/InternVL-14B-224px',
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True).cuda().eval()

image_processor = CLIPImageProcessor.from_pretrained('OpenGVLab/InternVL-14B-224px')

tokenizer = AutoTokenizer.from_pretrained(
    'OpenGVLab/InternVL-14B-224px', use_fast=False, add_eos_token=True)
tokenizer.pad_token_id = 0  # set pad_token_id to 0

images = [
    Image.open('./examples/image1.jpg').convert('RGB'),
    Image.open('./examples/image2.jpg').convert('RGB'),
    Image.open('./examples/image3.jpg').convert('RGB')
]
prefix = 'summarize:'
texts = [
    prefix + 'a photo of a red panda',  # English
    prefix + '一张熊猫的照片',  # Chinese
    prefix + '二匹の猫の写真'  # Japanese
]

pixel_values = image_processor(images=images, return_tensors='pt').pixel_values
pixel_values = pixel_values.to(torch.bfloat16).cuda()
input_ids = tokenizer(texts, return_tensors='pt', max_length=80,
                      truncation=True, padding='max_length').input_ids.cuda()

# InternVL-C
logits_per_image, logits_per_text = model(
    image=pixel_values, text=input_ids, mode='InternVL-C')
probs = logits_per_image.softmax(dim=-1)
# tensor([[9.9609e-01, 5.2185e-03, 6.0070e-08],
#         [2.2949e-02, 9.7656e-01, 5.9903e-06],
#         [3.2932e-06, 7.4863e-05, 1.0000e+00]], device='cuda:0',
#        dtype=torch.bfloat16, grad_fn=<SoftmaxBackward0>)

# InternVL-G
logits_per_image, logits_per_text = model(
    image=pixel_values, text=input_ids, mode='InternVL-G')
probs = logits_per_image.softmax(dim=-1)
# tensor([[9.9609e-01, 3.1738e-03, 3.6322e-08],
#         [8.6060e-03, 9.9219e-01, 2.8759e-06],
#         [1.7583e-06, 3.1233e-05, 1.0000e+00]], device='cuda:0',
#        dtype=torch.bfloat16, grad_fn=<SoftmaxBackward0>)

# please set add_eos_token to False for generation
tokenizer.add_eos_token = False
image = Image.open('./examples/image1.jpg').convert('RGB')
pixel_values = image_processor(images=image, return_tensors='pt').pixel_values
pixel_values = pixel_values.to(torch.bfloat16).cuda()

tokenized = tokenizer("English caption:", return_tensors='pt')
pred = model.generate(
    pixel_values=pixel_values,
    input_ids=tokenized.input_ids.cuda(),
    attention_mask=tokenized.attention_mask.cuda(),
    num_beams=5,
    min_new_tokens=8,
)
caption = tokenizer.decode(pred[0].cpu(), skip_special_tokens=True).strip()
# English caption: a red panda sitting on top of a wooden platform
```

</details>

<details>
  <summary>使用 InternVL-Chat 进行多模态对话 (点击展开)</summary>

这里我们以较小的 OpenGVLab/InternVL2-8B 为例:

```python
import numpy as np
import torch
import torchvision.transforms as T
from decord import VideoReader, cpu
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer

IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)


def build_transform(input_size):
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform


def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio


def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images


def load_image(image_file, input_size=448, max_num=6):
    image = Image.open(image_file).convert('RGB')
    transform = build_transform(input_size=input_size)
    images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    return pixel_values


path = 'OpenGVLab/InternVL2-8B'
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True).eval().cuda()

tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
# set the max number of tiles in `max_num`
pixel_values = load_image('./examples/image1.jpg', max_num=6).to(torch.bfloat16).cuda()

generation_config = dict(
    num_beams=1,
    max_new_tokens=1024,
    do_sample=False,
)

# pure-text conversation (纯文本对话)
question = 'Hello, who are you?'
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
print(f'User: {question}')
print(f'Assistant: {response}')

question = 'Can you tell me a story?'
response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
print(f'User: {question}')
print(f'Assistant: {response}')

# single-image single-round conversation (单图单轮对话)
question = '<image>\nPlease describe the image shortly.'
response = model.chat(tokenizer, pixel_values, question, generation_config)
print(f'User: {question}')
print(f'Assistant: {response}')

# single-image multi-round conversation (单图多轮对话)
question = '<image>\nPlease describe the image in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
print(f'User: {question}')
print(f'Assistant: {response}')

question = 'Please write a poem according to the image.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
print(f'User: {question}')
print(f'Assistant: {response}')

# multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
pixel_values1 = load_image('./examples/image1.jpg', max_num=6).to(torch.bfloat16).cuda()
pixel_values2 = load_image('./examples/image2.jpg', max_num=6).to(torch.bfloat16).cuda()
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)

question = '<image>\nDescribe the two images in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
                               history=None, return_history=True)

question = 'What are the similarities and differences between these two images.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
                               history=history, return_history=True)
print(f'User: {question}')
print(f'Assistant: {response}')

# multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
pixel_values1 = load_image('./examples/image1.jpg', max_num=6).to(torch.bfloat16).cuda()
pixel_values2 = load_image('./examples/image2.jpg', max_num=6).to(torch.bfloat16).cuda()
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]

question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
                               num_patches_list=num_patches_list,
                               history=None, return_history=True)
print(f'User: {question}')
print(f'Assistant: {response}')

question = 'What are the similarities and differences between these two images.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
                               num_patches_list=num_patches_list,
                               history=history, return_history=True)
print(f'User: {question}')
print(f'Assistant: {response}')

# batch inference, single image per sample (单图批处理)
pixel_values1 = load_image('./examples/image1.jpg', max_num=6).to(torch.bfloat16).cuda()
pixel_values2 = load_image('./examples/image2.jpg', max_num=6).to(torch.bfloat16).cuda()
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)

questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list)
responses = model.batch_chat(tokenizer, pixel_values,
                             num_patches_list=num_patches_list,
                             questions=questions,
                             generation_config=generation_config)
for question, response in zip(questions, responses):
    print(f'User: {question}')
    print(f'Assistant: {response}')

# video multi-round conversation (视频多轮对话)
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
    if bound:
        start, end = bound[0], bound[1]
    else:
        start, end = -100000, 100000
    start_idx = max(first_idx, round(start * fps))
    end_idx = min(round(end * fps), max_frame)
    seg_size = float(end_idx - start_idx) / num_segments
    frame_indices = np.array([
        int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
        for idx in range(num_segments)
    ])
    return frame_indices

def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32):
    vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
    max_frame = len(vr) - 1
    fps = float(vr.get_avg_fps())

    pixel_values_list, num_patches_list = [], []
    transform = build_transform(input_size=input_size)
    frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
    for frame_index in frame_indices:
        img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB')
        img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
        pixel_values = [transform(tile) for tile in img]
        pixel_values = torch.stack(pixel_values)
        num_patches_list.append(pixel_values.shape[0])
        pixel_values_list.append(pixel_values)
    pixel_values = torch.cat(pixel_values_list)
    return pixel_values, num_patches_list


video_path = './examples/red-panda.mp4'
# pixel_values, num_patches_list = load_video(video_path, num_segments=32, max_num=1)
pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
pixel_values = pixel_values.to(torch.bfloat16).cuda()
video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))])
question = video_prefix + 'What is the red panda doing?'
# Frame1: <image>\nFrame2: <image>\n...\nFrame31: <image>\n{question}
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
                               num_patches_list=num_patches_list,
                               history=None, return_history=True)
print(f'User: {question}')
print(f'Assistant: {response}')

question = 'Describe this video in detail. Don\'t repeat.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
                               num_patches_list=num_patches_list,
                               history=history, return_history=True)
print(f'User: {question}')
print(f'Assistant: {response}')
```

</details>

## 许可证

本项目以 [MIT](LICENSE) 许可证发布。项目中的部分代码和模型来自其它来源,受其原始许可证的约束。

## 引用

如果您在研究中发现本项目有用,请考虑引用:

```BibTeX
@article{chen2023internvl,
  title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
  author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
  journal={arXiv preprint arXiv:2312.14238},
  year={2023}
}

@article{chen2024far,
  title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
  author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
  journal={arXiv preprint arXiv:2404.16821},
  year={2024}
}
```

## 致谢

InternVL 的代码构建参考了以下的项目: [OpenAI CLIP](https://github.com/openai/CLIP)[Open CLIP](https://github.com/mlfoundations/open_clip)[CLIP Benchmark](https://github.com/LAION-AI/CLIP_benchmark)[EVA](https://github.com/baaivision/EVA/tree/master)[InternImage](https://github.com/OpenGVLab/InternImage)[ViT-Adapter](https://github.com/czczup/ViT-Adapter)[MMSegmentation](https://github.com/open-mmlab/mmsegmentation)[Transformers](https://github.com/huggingface/transformers)[DINOv2](https://github.com/facebookresearch/dinov2)[BLIP-2](https://github.com/salesforce/LAVIS/tree/main/projects/blip2)[Qwen-VL](https://github.com/QwenLM/Qwen-VL/tree/master/eval_mm)[LLaVA-1.5](https://github.com/haotian-liu/LLaVA),感谢这些杰出的工作。

______________________________________________________________________

如何您想加入我们的项目微信群,请扫描下方二维码添加我们的小助手:

<p align="center"><img width="300" alt="image" src="https://github.com/OpenGVLab/DragGAN/assets/26198430/e3f0807f-956a-474e-8fd2-1f7c22d73997"></p>