layernorm_rms_benchmarks.py 5.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project

import pickle as pkl
import time
from collections.abc import Iterable
from dataclasses import dataclass
from itertools import product
from typing import Callable, Optional

import torch
import torch.utils.benchmark as TBenchmark
from torch.utils.benchmark import Measurement as TMeasurement
from tqdm import tqdm

import vllm._custom_ops as ops
from vllm.model_executor.layers.layernorm import RMSNorm


@dataclass
class bench_params_t:
    num_tokens: int
    hidden_size: int
    add_residual: bool
    dtype: torch.dtype

    def description(self):
        return (
            f"N {self.num_tokens} "
            f"x D {self.hidden_size} "
            f"x R {self.add_residual} "
            f"x DT {self.dtype}"
        )


def get_bench_params() -> list[bench_params_t]:
    ## Test Fixtures
    NUM_TOKENS = [2**x for x in range(11)]
    HIDDEN_SIZES = list(range(1024, 8129, 1024))
    ADD_RESIDUAL = [True, False]
    DTYPES = [torch.bfloat16, torch.float]

    combinations = product(NUM_TOKENS, HIDDEN_SIZES, ADD_RESIDUAL, DTYPES)
    bench_params = list(
        map(lambda x: bench_params_t(x[0], x[1], x[2], x[3]), combinations)
    )
    return bench_params


# Reference impls
def unfused_int8_impl(
    rms_norm_layer: RMSNorm,
    x: torch.Tensor,
    residual: Optional[torch.Tensor],
    quant_dtype: torch.dtype,
):
    # Norm
    torch_out = None
    if residual is None:
        torch_out = rms_norm_layer.forward_cuda(x, residual)
    else:
        torch_out, _ = rms_norm_layer.forward_cuda(x, residual)

    # Quant
    torch_out, _, _ = ops.scaled_int8_quant(torch_out)


def unfused_fp8_impl(
    rms_norm_layer: RMSNorm,
    x: torch.Tensor,
    residual: Optional[torch.Tensor],
    quant_dtype: torch.dtype,
):
    # Norm
    torch_out = None
    if residual is None:
        torch_out = rms_norm_layer.forward_cuda(x, residual)
    else:
        torch_out, _ = rms_norm_layer.forward_cuda(x, residual)

    # Quant
    torch_out, _ = ops.scaled_fp8_quant(torch_out)


def fused_impl(
    rms_norm_layer: RMSNorm,  # this stores the weights
    x: torch.Tensor,
    residual: Optional[torch.Tensor],
    quant_dtype: torch.dtype,
):
    out, _ = ops.rms_norm_dynamic_per_token_quant(
        x, rms_norm_layer.weight, 1e-6, quant_dtype, residual=residual
    )


# Bench functions
def bench_fn(
    rms_norm_layer: RMSNorm,
    x: torch.Tensor,
    residual: torch.Tensor,
    quant_dtype: torch.dtype,
    label: str,
    sub_label: str,
    fn: Callable,
    description: str,
) -> TMeasurement:
    min_run_time = 1

    globals = {
        "rms_norm_layer": rms_norm_layer,
        "x": x,
        "residual": residual,
        "quant_dtype": quant_dtype,
        "fn": fn,
    }
    return TBenchmark.Timer(
        stmt="fn(rms_norm_layer, x, residual, quant_dtype)",
        globals=globals,
        label=label,
        sub_label=sub_label,
        description=description,
    ).blocked_autorange(min_run_time=min_run_time)


def bench(params: bench_params_t, label: str, sub_label: str) -> Iterable[TMeasurement]:
    # Make inputs
    layer = RMSNorm(params.hidden_size, 1e-6).to(dtype=params.dtype)
    # Make weights
    layer.weight.data.normal_(mean=1.0, std=0.1)
    # Make inputs
    scale = 1 / params.hidden_size
    x = (
        torch.randn(
            params.num_tokens, params.hidden_size, dtype=params.dtype, device="cuda"
        )
        * scale
    )
    residual = (
        (torch.randn_like(x) * scale).to(device="cuda") if params.add_residual else None
    )

    timers = []

    # unfused int8 impl.
    timers.append(
        bench_fn(
            layer,
            x,
            residual,
            torch.int8,
            label,
            sub_label,
            unfused_int8_impl,
            "unfused_int8_impl",
        )
    )

    # unfused fp8 impl.
    timers.append(
        bench_fn(
            layer,
            x,
            residual,
            torch.float8_e4m3fn,
            label,
            sub_label,
            unfused_fp8_impl,
            "unfused_fp8_impl",
        )
    )

    # fused int8 impl.
    timers.append(
        bench_fn(
            layer,
            x,
            residual,
            torch.int8,
            label,
            sub_label,
            fused_impl,
            "fused_int8_impl",
        )
    )

    # fused fp8 impl.
    timers.append(
        bench_fn(
            layer,
            x,
            residual,
            torch.float8_e4m3fn,
            label,
            sub_label,
            fused_impl,
            "fused_fp8_impl",
        )
    )

    print_timers(timers)

    return timers


# launch bench
# runner
def print_timers(timers: Iterable[TMeasurement]):
    compare = TBenchmark.Compare(timers)
    compare.print()


def main():
    torch.set_default_device("cuda")
    bench_params = get_bench_params()

    timers = []
    for bp in tqdm(bench_params):
        timers.extend(bench(bp, "rms-norm-dynamic-per-token-quant", bp.description()))
    print_timers(timers)

    # pickle all the results
    timestamp = int(time.time())
    with open(f"rms_norm_dpt_quant-{timestamp}.pkl", "wb") as f:
        pkl.dump(timers, f)


if __name__ == "__main__":
    main()