offline_inference_openai.md 8.39 KB
Newer Older
laibao's avatar
laibao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# Offline Inference with the OpenAI Batch file format

 **NOTE:** This is a guide to performing batch inference using the OpenAI batch file format, **NOT** the complete Batch (REST) API.
 
 ## File Format
 
 The OpenAI batch file format consists of a series of json objects on new lines.
 
 [See here for an example file.](https://github.com/vllm-project/vllm/blob/main/examples/openai_example_batch.jsonl)
 
 Each line represents a separate request. See the [OpenAI package reference](https://platform.openai.com/docs/api-reference/batch/requestInput) for more details.
 
 **NOTE:** We currently only support to `/v1/chat/completions` endpoint (embeddings and completions coming soon).
 
 ## Pre-requisites
 
* Ensure you are using `vllm >= 0.4.3`. You can check by running `python -c "import vllm; print(vllm.__version__)"`.
* The examples in this document use `meta-llama/Meta-Llama-3-8B-Instruct`.
  - Create a [user access token](https://huggingface.co/docs/hub/en/security-tokens)
  - Install the token on your machine (Run `huggingface-cli login`).
  - Get access to the gated model by [visiting the model card](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) and agreeing to the terms and conditions.
 
 
 ## Example: Running with a local file
 
 ### Step 1: Create your batch file
 
 To follow along with this example, you can download the example batch, or create your own batch file in your working directory.
 
 ```
 wget https://raw.githubusercontent.com/vllm-project/vllm/main/examples/openai_example_batch.jsonl
 ```
 
 Once you've created your batch file it should look like this
 
 ```
 $ cat openai_example_batch.jsonl
{"custom_id": "request-1", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "meta-llama/Meta-Llama-3-8B-Instruct", "messages": [{"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": "Hello world!"}],"max_tokens": 1000}}
{"custom_id": "request-2", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "meta-llama/Meta-Llama-3-8B-Instruct", "messages": [{"role": "system", "content": "You are an unhelpful assistant."},{"role": "user", "content": "Hello world!"}],"max_tokens": 1000}}
 ```
 
 ### Step 2: Run the batch
 
The batch running tool is designed to be used from the command line.

You can run the batch with the following command, which will write its results to a file called `results.jsonl`

```
python -m vllm.entrypoints.openai.run_batch -i openai_example_batch.jsonl -o results.jsonl --model meta-llama/Meta-Llama-3-8B-Instruct
```

### Step 3: Check your results

You should now have your results at `results.jsonl`. You can check your results by running `cat results.jsonl`

```
$ cat ../results.jsonl
{"id":"vllm-383d1c59835645aeb2e07d004d62a826","custom_id":"request-1","response":{"id":"cmpl-61c020e54b964d5a98fa7527bfcdd378","object":"chat.completion","created":1715633336,"model":"meta-llama/Meta-Llama-3-8B-Instruct","choices":[{"index":0,"message":{"role":"assistant","content":"Hello! It's great to meet you! I'm here to help with any questions or tasks you may have. What's on your mind today?"},"logprobs":null,"finish_reason":"stop","stop_reason":null}],"usage":{"prompt_tokens":25,"total_tokens":56,"completion_tokens":31}},"error":null}
{"id":"vllm-42e3d09b14b04568afa3f1797751a267","custom_id":"request-2","response":{"id":"cmpl-f44d049f6b3a42d4b2d7850bb1e31bcc","object":"chat.completion","created":1715633336,"model":"meta-llama/Meta-Llama-3-8B-Instruct","choices":[{"index":0,"message":{"role":"assistant","content":"*silence*"},"logprobs":null,"finish_reason":"stop","stop_reason":null}],"usage":{"prompt_tokens":27,"total_tokens":32,"completion_tokens":5}},"error":null}
```

## Example 2: Using remote files

The batch runner supports remote input and output urls that are accessible via http/https.

For example, to run against our example input file located at `https://raw.githubusercontent.com/vllm-project/vllm/main/examples/openai_example_batch.jsonl`, you can run

```
python -m vllm.entrypoints.openai.run_batch -i https://raw.githubusercontent.com/vllm-project/vllm/main/examples/openai_example_batch.jsonl -o results.jsonl --model meta-llama/Meta-Llama-3-8B-Instruct
```

## Example 3: Integrating with AWS S3

To integrate with cloud blob storage, we recommend using presigned urls.

[Learn more about S3 presigned urls here]

### Additional prerequisites

* [Create an S3 bucket](https://docs.aws.amazon.com/AmazonS3/latest/userguide/creating-bucket.html). 
* The `awscli` package (Run `pip install awscli`) to configure your credentials and interactively use s3.
  - [Configure your credentials](https://docs.aws.amazon.com/cli/latest/userguide/getting-started-quickstart.html).
* The `boto3` python package (Run `pip install boto3`) to generate presigned urls.

### Step 1: Upload your input script

To follow along with this example, you can download the example batch, or create your own batch file in your working directory.
 
 ```
 wget https://raw.githubusercontent.com/vllm-project/vllm/main/examples/openai_example_batch.jsonl
 ```
 
 Once you've created your batch file it should look like this
 
 ```
 $ cat openai_example_batch.jsonl
{"custom_id": "request-1", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "meta-llama/Meta-Llama-3-8B-Instruct", "messages": [{"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": "Hello world!"}],"max_tokens": 1000}}
{"custom_id": "request-2", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "meta-llama/Meta-Llama-3-8B-Instruct", "messages": [{"role": "system", "content": "You are an unhelpful assistant."},{"role": "user", "content": "Hello world!"}],"max_tokens": 1000}}
 ```

Now upload your batch file to your S3 bucket.

```
aws s3 cp openai_example_batch.jsonl s3://MY_BUCKET/MY_INPUT_FILE.jsonl
```

  
### Step 2: Generate your presigned urls

Presigned put urls can only be generated via the SDK. You can run the following python script to generate your presigned urls. Be sure to replace the `MY_BUCKET`, `MY_INPUT_FILE.jsonl`, and `MY_OUTPUT_FILE.jsonl` placeholders with your bucket and file names.

(The script is adapted from https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/python/example_code/s3/s3_basics/presigned_url.py)

```
import boto3
from botocore.exceptions import ClientError

def generate_presigned_url(s3_client, client_method, method_parameters, expires_in):
    """
    Generate a presigned Amazon S3 URL that can be used to perform an action.

    :param s3_client: A Boto3 Amazon S3 client.
    :param client_method: The name of the client method that the URL performs.
    :param method_parameters: The parameters of the specified client method.
    :param expires_in: The number of seconds the presigned URL is valid for.
    :return: The presigned URL.
    """
    try:
        url = s3_client.generate_presigned_url(
            ClientMethod=client_method, Params=method_parameters, ExpiresIn=expires_in
        )
    except ClientError:
        raise
    return url


s3_client = boto3.client("s3")
input_url = generate_presigned_url(
    s3_client, "get_object", {"Bucket": "MY_BUCKET", "Key": "MY_INPUT_FILE.jsonl"}, 3600
)
output_url = generate_presigned_url(
    s3_client, "put_object", {"Bucket": "MY_BUCKET", "Key": "MY_OUTPUT_FILE.jsonl"}, 3600
)
print(f"{input_url=}")
print(f"{output_url=}")
```

This script should output

```
input_url='https://s3.us-west-2.amazonaws.com/MY_BUCKET/MY_INPUT_FILE.jsonl?AWSAccessKeyId=ABCDEFGHIJKLMNOPQRST&Signature=abcdefghijklmnopqrstuvwxyz12345&Expires=1715800091'
output_url='https://s3.us-west-2.amazonaws.com/MY_BUCKET/MY_OUTPUT_FILE.jsonl?AWSAccessKeyId=ABCDEFGHIJKLMNOPQRST&Signature=abcdefghijklmnopqrstuvwxyz12345&Expires=1715800091'
```

### Step 3: Run the batch runner using your presigned urls

You can now run the batch runner, using the urls generated in the previous section.

```
python -m vllm.entrypoints.openai.run_batch \
    -i "https://s3.us-west-2.amazonaws.com/MY_BUCKET/MY_INPUT_FILE.jsonl?AWSAccessKeyId=ABCDEFGHIJKLMNOPQRST&Signature=abcdefghijklmnopqrstuvwxyz12345&Expires=1715800091" \
    -o "https://s3.us-west-2.amazonaws.com/MY_BUCKET/MY_OUTPUT_FILE.jsonl?AWSAccessKeyId=ABCDEFGHIJKLMNOPQRST&Signature=abcdefghijklmnopqrstuvwxyz12345&Expires=1715800091" \
    --model --model meta-llama/Meta-Llama-3-8B-Instruct
```

### Step 4: View your results

Your results are now on S3. You can view them in your terminal by running

```
aws s3 cp s3://MY_BUCKET/MY_OUTPUT_FILE.jsonl -
```