quantize.py 12.3 KB
Newer Older
laibao's avatar
laibao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # noqa: E501
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Adapted from examples/quantization/hf_ptq.py
"""

import argparse
import copy
import json
import random
import time

import ammo.torch.quantization as atq
import numpy as np
import torch
from ammo.torch.export import export_model_config
from datasets import load_dataset
from torch.utils.data import DataLoader
from transformers import AutoModelForCausalLM, AutoTokenizer

RAND_SEED = 1234
MAX_SEQ_LEN = 2048

EMPTY_CFG = {
    "quant_cfg": {
        "*weight_quantizer": {
            "enable": False,
        },
        "*input_quantizer": {
            "enable": False
        },
        "*lm_head*": {
            "enable": False
        },
        "*output_layer*": {
            "enable": False
        },
        "default": {
            "enable": False
        },
    },
    "algorithm": "max",
}

KV_CACHE_CFG = {
    "*.query_key_value.output_quantizer": {
        "num_bits": 8,
        "axis": None,
        "enable": True
    },
    "*.Wqkv.output_quantizer": {
        "num_bits": 8,
        "axis": None,
        "enable": True
    },
    "*.W_pack.output_quantizer": {
        "num_bits": 8,
        "axis": None,
        "enable": True
    },
    "*.c_attn.output_quantizer": {
        "num_bits": 8,
        "axis": None,
        "enable": True
    },
    "*.k_proj.output_quantizer": {
        "num_bits": 8,
        "axis": None,
        "enable": True
    },
    "*.v_proj.output_quantizer": {
        "num_bits": 8,
        "axis": None,
        "enable": True
    },
}

QUANT_CFG_CHOICES = {
    "int8_sq": atq.INT8_SMOOTHQUANT_CFG,
    "fp8": atq.FP8_DEFAULT_CFG,
    "int4_awq": atq.INT4_AWQ_CFG,
    "w4a8_awq": atq.W4A8_AWQ_BETA_CFG,
    "int8_wo": EMPTY_CFG,
    "int4_wo": EMPTY_CFG,
    "full_prec": EMPTY_CFG,
}

MODEL_NAME_PATTERN_MAP = {
    "GPT2": "gpt2",
    "Xverse": "llama",
    "Llama": "llama",
    "Mistral": "llama",
    "GPTJ": "gptj",
    "FalconForCausalLM": "falcon",
    "RWForCausalLM": "falcon",
    "baichuan": "baichuan",
    "MPT": "mpt",
    "Bloom": "bloom",
    "ChatGLM": "chatglm",
    "QWen": "qwen",
}


def get_tokenizer(ckpt_path, max_seq_len=MAX_SEQ_LEN, model_type=None):
    print(f"Initializing tokenizer from {ckpt_path}")
    tokenizer = AutoTokenizer.from_pretrained(
        ckpt_path,
        model_max_length=max_seq_len,
        padding_side="left",
        trust_remote_code=True,
    )
    if model_type and model_type == "qwen":
        # qwen use token id 151643 as pad and eos tokens
        tokenizer.pad_token = tokenizer.convert_ids_to_tokens(151643)
        tokenizer.eos_token = tokenizer.convert_ids_to_tokens(151643)

    # can't set attribute 'pad_token' for "<unk>"
    if tokenizer.pad_token != "<unk>":
        tokenizer.pad_token = tokenizer.eos_token
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token
    assert (tokenizer.pad_token
            is not None), f"Pad token for {model_type} cannot be set!"

    return tokenizer


def get_model(ckpt_path, dtype="fp16", device="cuda"):
    print(f"Initializing model from {ckpt_path}")
    if dtype == "bf16" or dtype == "bfloat16":
        dtype = torch.bfloat16
    elif dtype == "fp16" or dtype == "float16":
        dtype = torch.float16
    elif dtype == "fp32" or dtype == "float32":
        dtype = torch.float32
    else:
        raise NotImplementedError(f"Unknown dtype {dtype}")

    # model_kwargs = {"torch_dtype": dtype}
    model_kwargs = {"torch_dtype": "auto"}

    model = AutoModelForCausalLM.from_pretrained(ckpt_path,
                                                 device_map="auto",
                                                 **model_kwargs,
                                                 trust_remote_code=True)
    model.eval()

    model_dtype = next(model.parameters()).dtype
    if dtype != model_dtype:
        print("[TensorRT-LLM][WARNING] The manually set model data type is "
              f"{dtype}, but the data type of the HuggingFace model is "
              f"{model_dtype}.")

    return model


def get_model_type(model):
    for k, v in MODEL_NAME_PATTERN_MAP.items():
        if k.lower() in type(model).__name__.lower():
            return v
    return None


def get_calib_dataloader(data="cnn_dailymail",
                         tokenizer=None,
                         batch_size=1,
                         calib_size=512,
                         block_size=512,
                         device=None):
    print("Loading calibration dataset")
    if data == "pileval":
        dataset = load_dataset(
            "json",
            data_files="https://the-eye.eu/public/AI/pile/val.jsonl.zst",
            split="train")
        dataset = dataset["text"][:calib_size]
    elif data == "cnn_dailymail":
        dataset = load_dataset("cnn_dailymail", name="3.0.0", split="train")
        dataset = dataset["article"][:calib_size]
    else:
        raise NotImplementedError

    batch_encoded = tokenizer.batch_encode_plus(dataset,
                                                return_tensors="pt",
                                                padding="max_length",
                                                truncation=True,
                                                max_length=block_size)
    if device:
        batch_encoded = batch_encoded.to(device)
    batch_encoded = batch_encoded["input_ids"]

    calib_dataloader = DataLoader(batch_encoded,
                                  batch_size=batch_size,
                                  shuffle=False)

    return calib_dataloader


def quantize_model(model, quant_cfg, calib_dataloader=None):

    def calibrate_loop():
        if calib_dataloader is None:
            return
        """Adjusts weights and scaling factors based on selected algorithms."""
        for idx, data in enumerate(calib_dataloader):
            print(f"Calibrating batch {idx}")
            model(data)

    print("Starting quantization...")
    start_time = time.time()
    atq.quantize(model, quant_cfg, forward_loop=calibrate_loop)
    end_time = time.time()
    print("Quantization done. Total time used: {:.2f} s.".format(end_time -
                                                                 start_time))

    return model


def main(args):
    if not torch.cuda.is_available():
        raise EnvironmentError("GPU is required for inference.")

    random.seed(RAND_SEED)
    np.random.seed(RAND_SEED)

    model = get_model(args.model_dir, args.dtype, args.device)
    model_type = get_model_type(model)
    tokenizer = get_tokenizer(args.model_dir, model_type=model_type)

    if args.qformat in ["full_prec", "int8_wo", "int4_wo"
                        ] and args.kv_cache_dtype is None:
        print(f"No quantization applied, export {args.dtype} model")
    else:
        if "awq" in args.qformat:
            if args.calib_size > 32:
                print("AWQ calibration could take longer with calib_size = "
                      f"{args.calib_size}, Using calib_size=32 instead")
                args.calib_size = 32
            print("\nAWQ calibration could take longer than other calibration "
                  "methods. Please increase the batch size to speed up the "
                  "calibration process. Batch size can be set by adding the "
                  "argument --batch_size <batch_size> to the command line.\n")

        calib_dataloader = get_calib_dataloader(
            tokenizer=tokenizer,
            batch_size=args.batch_size,
            calib_size=args.calib_size,
            device=args.device,
        )

        if args.qformat in QUANT_CFG_CHOICES:
            quant_cfg = QUANT_CFG_CHOICES[args.qformat]
        else:
            raise ValueError(
                f"Unsupported quantization format: {args.qformat}")

        if "awq" in args.qformat:
            quant_cfg = copy.deepcopy(QUANT_CFG_CHOICES[args.qformat])
            weight_quantizer = quant_cfg["quant_cfg"][
                "*weight_quantizer"]  # type: ignore
            if isinstance(weight_quantizer, list):
                weight_quantizer = weight_quantizer[0]
            weight_quantizer["block_sizes"][-1] = args.awq_block_size

        if args.kv_cache_dtype is not None:
            if args.kv_cache_dtype == "fp8":
                for value in KV_CACHE_CFG.values():
                    value.update({"num_bits": (4, 3)})  # type: ignore
            quant_cfg["quant_cfg"].update(KV_CACHE_CFG)  # type: ignore

        print(quant_cfg)

        model = quantize_model(model, quant_cfg, calib_dataloader)

    with torch.inference_mode():
        if model_type is None:
            print(f"Unknown model type {type(model).__name__}. Continue "
                  "exporting...")
            model_type = f"unknown:{type(model).__name__}"

        export_path = args.output_dir
        start_time = time.time()

        if args.qformat == "int4_awq" and model_type == "qwen":
            torch.save(model.state_dict(), export_path)
        else:
            export_npz = (model_type not in [
                'gptj', 'falcon', 'chatglm', 'mpt', 'llama', 'baichuan'
            ])

            # export safetensors
            export_model_config(
                model,
                model_type,
                getattr(torch, args.dtype),
                export_dir=export_path,
                inference_tensor_parallel=args.tp_size,
                inference_pipeline_parallel=args.pp_size,
                # export_tensorrt_llm_config=(not export_npz),
                export_tensorrt_llm_config=False,
                export_npz=export_npz)

            # Workaround for wo quantization
            if args.qformat in ["int8_wo", "int4_wo", "full_prec"]:
                with open(f"{export_path}/config.json", 'r') as f:
                    tensorrt_llm_config = json.load(f)
                if args.qformat == "int8_wo":
                    tensorrt_llm_config["quantization"]["quant_algo"] = 'W8A16'
                elif args.qformat == "int4_wo":
                    tensorrt_llm_config["quantization"]["quant_algo"] = 'W4A16'
                else:
                    tensorrt_llm_config["quantization"]["quant_algo"] = None
                with open(f"{export_path}/config.json", "w") as f:
                    json.dump(tensorrt_llm_config, f, indent=4)

        end_time = time.time()
        print("Quantized model exported to {} \nTotal time used {:.2f} s.".
              format(export_path, end_time - start_time))


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument("--model_dir",
                        help="Specify where the HuggingFace model is",
                        required=True)
    parser.add_argument("--device", default="cuda")
    parser.add_argument("--dtype", help="Model data type.", default="float16")
    parser.add_argument(
        "--qformat",
        help="Quantization format.",
        default="full_prec",
        choices=[
            "fp8", "int8_sq", "int4_awq", "w4a8_awq", "int8_wo", "int4_wo",
            "full_prec"
        ],
    )
    parser.add_argument("--batch_size",
                        help="Batch size for calibration.",
                        type=int,
                        default=1)
    parser.add_argument("--calib_size",
                        help="Number of samples for calibration.",
                        type=int,
                        default=512)
    parser.add_argument("--output_dir", default="exported_model")
    parser.add_argument("--tp_size", type=int, default=1)
    parser.add_argument("--pp_size", type=int, default=1)
    parser.add_argument("--awq_block_size", type=int, default=128)
    parser.add_argument("--kv_cache_dtype",
                        help="KV Cache dtype.",
                        default=None,
                        choices=["int8", "fp8", None])
    args = parser.parse_args()

    main(args)