benchmark_rope.py 4.39 KB
Newer Older
laibao's avatar
laibao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import argparse
from itertools import accumulate
from typing import Optional

import nvtx
import torch

from vllm.model_executor.layers.rotary_embedding import get_rope


def benchmark_rope_kernels_multi_lora(
    is_neox_style: bool,
    batch_size: int,
    seq_len: int,
    num_heads: int,
    head_size: int,
    rotary_dim: Optional[int],
    dtype: torch.dtype,
    seed: int,
    device: str,
    max_position: int = 8192,
    base: int = 10000,
) -> None:
    torch.random.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed(seed)
    torch.set_default_device(device)
    if rotary_dim is None:
        rotary_dim = head_size
    # silulating serving 4 LoRAs
    scaling_factors = [1, 2, 4, 8]
    # batched RoPE can take multiple scaling factors
    batched_rope = get_rope(head_size, rotary_dim, max_position, base,
                            is_neox_style, {
                                "type": "linear",
                                "factor": tuple(scaling_factors)
                            })
    # non-batched RoPE takes only one scaling factor, we create multiple
    # instances to simulate the same behavior
    non_batched_ropes = []
    for scaling_factor in scaling_factors:
        non_batched_ropes.append(
            get_rope(head_size, rotary_dim, max_position, base, is_neox_style,
                     {
                         "type": "linear",
                         "factor": (scaling_factor, )
                     }))

    positions = torch.randint(0, max_position, (batch_size, seq_len))
    query = torch.randn(batch_size,
                        seq_len,
                        num_heads * head_size,
                        dtype=dtype)
    key = torch.randn_like(query)

    # create query offsets for batched RoPE, we concat multiple kv cache
    # together and each query needs to find the right kv cache of its type
    offset_map = torch.tensor(
        list(
            accumulate([0] + [
                max_position * scaling_factor * 2
                for scaling_factor in scaling_factors[:-1]
            ])))
    query_types = torch.randint(0,
                                len(scaling_factors), (batch_size, seq_len),
                                device=device)
    # map query types to offsets
    query_offsets = offset_map[query_types]
    # the kernel takes flattened offsets
    flatten_offsets = query_offsets.flatten()

    # batched queries of the same type together for non-batched RoPE
    queries = [query[query_types == i] for i in range(len(scaling_factors))]
    keys = [key[query_types == i] for i in range(len(scaling_factors))]
    packed_qkr = zip(queries, keys, non_batched_ropes)
    # synchronize before start timing
    torch.cuda.synchronize()
    with nvtx.annotate("non-batched", color="yellow"):
        for q, k, r in packed_qkr:
            r.forward(positions, q, k)
    torch.cuda.synchronize()
    with nvtx.annotate("batched", color="green"):
        batched_rope.forward(positions, query, key, flatten_offsets)
    torch.cuda.synchronize()


if __name__ == '__main__':
    parser = argparse.ArgumentParser(
        description="Benchmark the rotary embedding kernels.")
    parser.add_argument("--is-neox-style", type=bool, default=True)
    parser.add_argument("--batch-size", type=int, default=16)
    parser.add_argument("--seq-len", type=int, default=512)
    parser.add_argument("--num-heads", type=int, default=8)
    parser.add_argument("--head-size",
                        type=int,
                        choices=[64, 80, 96, 112, 128, 192, 256],
                        default=128)
    parser.add_argument("--rotary-dim", type=int, choices=[16, 32], default=32)
    parser.add_argument("--dtype",
                        type=str,
                        choices=["bfloat16", "float"],
                        default="float")
    parser.add_argument("--seed", type=int, default=0)
    parser.add_argument("--device",
                        type=str,
                        choices=["cuda:0", "cuda:1"],
                        default="cuda:0")
    args = parser.parse_args()
    print(args)

    benchmark_rope_kernels_multi_lora(
        is_neox_style=args.is_neox_style,
        batch_size=args.batch_size,
        seq_len=args.seq_len,
        num_heads=args.num_heads,
        head_size=args.head_size,
        rotary_dim=args.rotary_dim,
        dtype=getattr(torch, args.dtype),
        seed=args.seed,
        device=args.device,
    )