benchmark_moe.py 10.7 KB
Newer Older
laibao's avatar
laibao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import argparse
import time
from datetime import datetime
from typing import Any, Dict, List, Tuple

import ray
import torch
import triton
from ray.experimental.tqdm_ray import tqdm
from transformers import AutoConfig

from vllm.model_executor.layers.fused_moe.fused_moe import *


def benchmark_config(
    config: Dict[str, int],
    num_tokens: int,
    num_experts: int,
    shard_intermediate_size: int,
    hidden_size: int,
    topk: int,
    dtype: torch.dtype,
    use_fp8: bool,
    num_iters: int = 100,
) -> float:
    init_dtype = torch.float16 if use_fp8 else dtype
    x = torch.randn(num_tokens, hidden_size, dtype=dtype)
    w1 = torch.randn(num_experts,
                     shard_intermediate_size,
                     hidden_size,
                     dtype=init_dtype)
    w2 = torch.randn(num_experts,
                     hidden_size,
                     shard_intermediate_size // 2,
                     dtype=init_dtype)
    gating_output = torch.randn(num_iters,
                                num_tokens,
                                num_experts,
                                dtype=torch.float32)

    w1_scale = None
    w2_scale = None
    a1_scale = None
    a2_scale = None
    if use_fp8:
        w1_scale = torch.randn(num_experts, dtype=torch.float32)
        w2_scale = torch.randn(num_experts, dtype=torch.float32)
        a1_scale = torch.randn(1, dtype=torch.float32)
        a2_scale = torch.randn(1, dtype=torch.float32)

        w1 = w1.to(torch.float8_e4m3fn)
        w2 = w2.to(torch.float8_e4m3fn)

    input_gating = torch.empty(num_tokens, num_experts, dtype=torch.float32)

    def prepare(i: int):
        input_gating.copy_(gating_output[i])

    def run():
        fused_moe(
            x,
            w1,
            w2,
            input_gating,
            topk,
            renormalize=True,
            inplace=True,
            override_config=config,
            use_fp8=use_fp8,
            w1_scale=w1_scale,
            w2_scale=w2_scale,
            a1_scale=a1_scale,
            a2_scale=a2_scale,
        )

    # JIT compilation & warmup
    run()
    torch.cuda.synchronize()

    # Capture 10 invocations with CUDA graph
    graph = torch.cuda.CUDAGraph()
    with torch.cuda.graph(graph):
        for _ in range(10):
            run()
    torch.cuda.synchronize()

    # Warmup
    for _ in range(5):
        graph.replay()
    torch.cuda.synchronize()

    start_event = torch.cuda.Event(enable_timing=True)
    end_event = torch.cuda.Event(enable_timing=True)

    latencies = []
    for i in range(num_iters):
        prepare(i)
        torch.cuda.synchronize()

        start_event.record()
        graph.replay()
        end_event.record()
        end_event.synchronize()
        latencies.append(start_event.elapsed_time(end_event))
    avg = sum(latencies) / (num_iters * 10) * 1000  # us
    graph.reset()
    return avg


def get_configs_compute_bound() -> List[Dict[str, int]]:
    # Reduced search space for faster tuning.
    # TODO(woosuk): Increase the search space and use a performance model to
    # prune the search space.
    configs = []
    for num_stages in [2, 3, 4, 5]:
        for block_m in [16, 32, 64, 128, 256]:
            for block_k in [64, 128, 256]:
                for block_n in [32, 64, 128, 256]:
                    for num_warps in [4, 8]:
                        for group_size in [1, 16, 32, 64]:
                            configs.append({
                                "BLOCK_SIZE_M": block_m,
                                "BLOCK_SIZE_N": block_n,
                                "BLOCK_SIZE_K": block_k,
                                "GROUP_SIZE_M": group_size,
                                "num_warps": num_warps,
                                "num_stages": num_stages,
                            })
    return configs


@ray.remote(num_gpus=1)
class BenchmarkWorker:

    def __init__(self, seed: int) -> None:
        torch.set_default_device("cuda")
        torch.cuda.manual_seed_all(seed)
        self.seed = seed

    def benchmark(
        self,
        num_tokens: int,
        num_experts: int,
        shard_intermediate_size: int,
        hidden_size: int,
        topk: int,
        dtype: torch.dtype,
        use_fp8: bool,
    ) -> Tuple[Dict[str, int], float]:
        torch.cuda.manual_seed_all(self.seed)

        dtype_str = "float8" if use_fp8 else None
        # NOTE(woosuk): The current naming convention uses w2.shape[2], which
        # is the intermediate size after silu_and_mul.
        op_config = get_moe_configs(num_experts, shard_intermediate_size // 2,
                                    dtype_str)
        if op_config is None:
            config = get_default_config(num_tokens, num_experts,
                                        shard_intermediate_size, hidden_size,
                                        topk, dtype_str)
        else:
            config = op_config[min(op_config.keys(),
                                   key=lambda x: abs(x - num_tokens))]
        kernel_time = benchmark_config(config, num_tokens, num_experts,
                                       shard_intermediate_size, hidden_size,
                                       topk, dtype, use_fp8)
        return config, kernel_time

    def tune(
        self,
        num_tokens: int,
        num_experts: int,
        shard_intermediate_size: int,
        hidden_size: int,
        topk: int,
        dtype: torch.dtype,
        use_fp8: bool,
        search_space: List[Dict[str, int]],
    ) -> Dict[str, int]:
        best_config = None
        best_time = float("inf")
        for config in tqdm(search_space):
            try:
                kernel_time = benchmark_config(config,
                                               num_tokens,
                                               num_experts,
                                               shard_intermediate_size,
                                               hidden_size,
                                               topk,
                                               dtype,
                                               use_fp8,
                                               num_iters=10)
            except triton.runtime.autotuner.OutOfResources:
                # Some configurations may be invalid and fail to compile.
                continue

            if kernel_time < best_time:
                best_time = kernel_time
                best_config = config
        now = datetime.now()
        print(f"{now.ctime()}] Completed tuning for batch_size={num_tokens}")
        return best_config


def sort_config(config: Dict[str, int]) -> Dict[str, int]:
    return {
        "BLOCK_SIZE_M": config["BLOCK_SIZE_M"],
        "BLOCK_SIZE_N": config["BLOCK_SIZE_N"],
        "BLOCK_SIZE_K": config["BLOCK_SIZE_K"],
        "GROUP_SIZE_M": config["GROUP_SIZE_M"],
        "num_warps": config["num_warps"],
        "num_stages": config["num_stages"],
    }


def save_configs(
    configs: Dict[int, Dict[str, int]],
    num_experts: int,
    shard_intermediate_size: int,
    hidden_size: int,
    topk: int,
    dtype: torch.dtype,
    use_fp8: bool,
) -> None:
    dtype_str = "float8" if use_fp8 else None
    # NOTE(woosuk): The current naming convention uses w2.shape[2], which
    # is the intermediate size after silu_and_mul.
    filename = get_config_file_name(num_experts, shard_intermediate_size // 2,
                                    dtype_str)
    print(f"Writing best config to {filename}...")
    with open(filename, "w") as f:
        json.dump(configs, f, indent=4)
        f.write("\n")


def main(args: argparse.Namespace):
    print(args)

    config = AutoConfig.from_pretrained(args.model)
    if config.architectures[0] == "DbrxForCausalLM":
        E = config.ffn_config.moe_num_experts
        topk = config.ffn_config.moe_top_k
        intermediate_size = config.ffn_config.ffn_hidden_size
        shard_intermediate_size = 2 * intermediate_size // args.tp_size
    else:
        # Default: Mixtral.
        E = config.num_local_experts
        topk = config.num_experts_per_tok
        intermediate_size = config.intermediate_size
        shard_intermediate_size = 2 * intermediate_size // args.tp_size

    hidden_size = config.hidden_size
    dtype = config.torch_dtype
    use_fp8 = args.dtype == "fp8"

    if args.batch_size is None:
        batch_sizes = [
            1, 2, 4, 8, 16, 24, 32, 48, 64, 96, 128, 256, 512, 1024, 1536,
            2048, 3072, 4096
        ]
    else:
        batch_sizes = [args.batch_size]

    ray.init()
    num_gpus = int(ray.available_resources()["GPU"])
    workers = [BenchmarkWorker.remote(args.seed) for _ in range(num_gpus)]

    def _distribute(method: str, inputs: List[Any]) -> List[Any]:
        outputs = []
        worker_idx = 0
        for input_args in inputs:
            worker = workers[worker_idx]
            worker_method = getattr(worker, method)
            output = worker_method.remote(*input_args)
            outputs.append(output)
            worker_idx = (worker_idx + 1) % num_gpus
        return ray.get(outputs)

    if args.tune:
        search_space = get_configs_compute_bound()
        print(f"Start tuning over {len(search_space)} configurations...")

        start = time.time()
        configs = _distribute(
            "tune", [(batch_size, E, shard_intermediate_size, hidden_size,
                      topk, dtype, use_fp8, search_space)
                     for batch_size in batch_sizes])
        best_configs = {
            M: sort_config(config)
            for M, config in zip(batch_sizes, configs)
        }
        save_configs(best_configs, E, shard_intermediate_size, hidden_size,
                     topk, dtype, use_fp8)
        end = time.time()
        print(f"Tuning took {end - start:.2f} seconds")
    else:
        outputs = _distribute("benchmark",
                              [(batch_size, E, shard_intermediate_size,
                                hidden_size, topk, dtype, use_fp8)
                               for batch_size in batch_sizes])

        for batch_size, (config, kernel_time) in zip(batch_sizes, outputs):
            print(f"Batch size: {batch_size}, config: {config}")
            print(f"Kernel time: {kernel_time:.2f} us")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model",
                        type=str,
                        default="mistralai/Mixtral-8x7B-Instruct-v0.1")
    parser.add_argument("--tp-size", "-tp", type=int, default=2)
    parser.add_argument("--dtype",
                        type=str,
                        choices=["auto", "fp8"],
                        default="auto")
    parser.add_argument("--seed", type=int, default=0)
    parser.add_argument("--batch-size", type=int, required=False)
    parser.add_argument("--tune", action="store_true")
    args = parser.parse_args()

    main(args)