captioning.py 6.89 KB
Newer Older
dongchy920's avatar
dongchy920 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
"""
 Copyright (c) 2022, salesforce.com, inc.
 All rights reserved.
 SPDX-License-Identifier: BSD-3-Clause
 For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""

import json
import os
import tempfile

from lavis.common.dist_utils import main_process
from lavis.common.registry import registry
from lavis.tasks.base_task import BaseTask


@registry.register_task("captioning")
class CaptionTask(BaseTask):
    def __init__(self, num_beams, max_len, min_len, evaluate, report_metric=True):
        super().__init__()

        self.num_beams = num_beams
        self.max_len = max_len
        self.min_len = min_len
        self.evaluate = evaluate

        self.report_metric = report_metric

    @classmethod
    def setup_task(cls, cfg):
        run_cfg = cfg.run_cfg

        num_beams = run_cfg.num_beams
        max_len = run_cfg.max_len
        min_len = run_cfg.min_len
        evaluate = run_cfg.evaluate

        report_metric = run_cfg.get("report_metric", True)

        return cls(
            num_beams=num_beams,
            max_len=max_len,
            min_len=min_len,
            evaluate=evaluate,
            report_metric=report_metric,
        )

    def valid_step(self, model, samples):
        results = []

        # run_cfg = slf.cfg.run_cfg
        captions = model.generate(
            samples,
            use_nucleus_sampling=False,
            num_beams=self.num_beams,
            max_length=self.max_len,
            min_length=self.min_len,
        )

        img_ids = samples["image_id"]
        for caption, img_id in zip(captions, img_ids):
            results.append({"caption": caption, "image_id": int(img_id)})

        return results

    def after_evaluation(self, val_result, split_name, epoch, **kwargs):
        eval_result_file = self.save_result(
            result=val_result,
            result_dir=registry.get_path("result_dir"),
            filename="{}_epoch{}".format(split_name, epoch),
            remove_duplicate="image_id",
        )

        if self.report_metric:
            metrics = self._report_metrics(
                eval_result_file=eval_result_file, split_name=split_name
            )
        else:
            metrics = {"agg_metrics": 0.0}

        return metrics

    @main_process
    def _report_metrics(self, eval_result_file, split_name):
        # TODO better way to define this
        coco_gt_root = os.path.join(registry.get_path("cache_root"), "coco_gt")
        coco_val = coco_caption_eval(coco_gt_root, eval_result_file, split_name)

        agg_metrics = coco_val.eval["CIDEr"]
        log_stats = {split_name: {k: v for k, v in coco_val.eval.items()}}

        with open(
            os.path.join(registry.get_path("output_dir"), "evaluate.txt"), "a"
        ) as f:
            f.write(json.dumps(log_stats) + "\n")

        coco_res = {k: v for k, v in coco_val.eval.items()}
        coco_res["agg_metrics"] = agg_metrics

        return coco_res


@registry.register_task("flickr30k_instruct")
class Flickr30kCaptionTask(CaptionTask):
    def valid_step(self, model, samples):
        results = []

        captions = model.generate(
            samples,
            use_nucleus_sampling=False,
            num_beams=self.num_beams,
            max_length=self.max_len,
            min_length=self.min_len,
        )

        img_ids = samples["image_id"]
        for caption, img_id in zip(captions, img_ids):
            results.append({"caption": caption, "image_id": int(img_id)})

        return results

    def after_evaluation(self, val_result, split_name, epoch, **kwargs):
        eval_result_file = self.save_result(
            val_result,
            result_dir=registry.get_path("result_dir"),
            filename=f"{split_name}_flickr30k_caption_instruct_result_epoch{epoch}",
            remove_duplicate="",
        )
        if split_name == "val":
            metrics = self._report_metrics(
                eval_result_file=eval_result_file, split_name=split_name
            )
        else:
            metrics = None
        return metrics

    @main_process
    def _report_metrics(self, eval_result_file, split_name):
        coco_val = flickr30k_caption_eval(eval_result_file, split_name)

        agg_metrics = coco_val.eval["CIDEr"] + coco_val.eval["Bleu_4"]
        log_stats = {split_name: {k: v for k, v in coco_val.eval.items()}}

        with open(
            os.path.join(registry.get_path("output_dir"), "evaluate.txt"), "a"
        ) as f:
            f.write(json.dumps(log_stats) + "\n")

        coco_res = {k: v for k, v in coco_val.eval.items()}
        coco_res["agg_metrics"] = agg_metrics

        return coco_res


# TODO better structure for this.
from pycocoevalcap.eval import COCOEvalCap
from pycocotools.coco import COCO
from torchvision.datasets.utils import download_url


def coco_caption_eval(coco_gt_root, results_file, split):
    urls = {
        "val": "https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_val_gt.json",
        "test": "https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_test_gt.json",
    }
    filenames = {
        "val": "coco_karpathy_val_gt.json",
        "test": "coco_karpathy_test_gt.json",
    }

    download_url(urls[split], coco_gt_root)
    annotation_file = os.path.join(coco_gt_root, filenames[split])

    # create coco object and coco_result object
    coco = COCO(annotation_file)
    coco_result = coco.loadRes(results_file)

    # create coco_eval object by taking coco and coco_result
    coco_eval = COCOEvalCap(coco, coco_result)

    # evaluate on a subset of images by setting
    # coco_eval.params['image_id'] = coco_result.getImgIds()
    # please remove this line when evaluating the full validation set
    # coco_eval.params['image_id'] = coco_result.getImgIds()

    # evaluate results
    # SPICE will take a few minutes the first time, but speeds up due to caching
    coco_eval.evaluate()

    # print output evaluation scores
    for metric, score in coco_eval.eval.items():
        print(f"{metric}: {score:.3f}")

    return coco_eval


def flickr30k_caption_eval(results_file, split):
    files = {
        "val": "/input/flickr30k/annotations/val_gt.json",
        "test": "/input/flickr30k/annotations/test_gt.json",
    }
    annotation_file = files[split]

    flickr = COCO(annotation_file)
    print(f"flickr: {annotation_file}")
    print(f"results: {results_file}")
    flickr_result = flickr.loadRes(results_file)

    # create coco_eval object by taking flickr and flickr_result
    flickr_eval = COCOEvalCap(flickr, flickr_result)

    # evaluate on a subset of images by setting
    flickr_eval.params[
        "image_id"
    ] = (
        flickr_result.getImgIds()
    )  # please remove this line when evaluating the full validation set

    # evaluate results
    flickr_eval.evaluate()

    # print CIDEr output evaluation scores
    print(f"CIDEr: {flickr_eval.eval['CIDEr']:.3f}")

    return flickr_eval