blip2_image_text_matching.ipynb 3.22 KB
Newer Older
dongchy920's avatar
dongchy920 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch\n",
    "from PIL import Image\n",
    "\n",
    "from lavis.models import load_model_and_preprocess\n",
    "from lavis.processors import load_processor"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Load an example image and text"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "raw_image = Image.open(\"../docs/_static/merlion.png\").convert(\"RGB\")\n",
    "display(raw_image.resize((596, 437)))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# setup device to use\n",
    "device = torch.device(\"cuda\") if torch.cuda.is_available() else \"cpu\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "caption = \"merlion in Singapore\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Load model and preprocessors"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "model, vis_processors, text_processors = load_model_and_preprocess(\"blip2_image_text_matching\", \"pretrain\", device=device, is_eval=True)\n",
    "# model, vis_processors, text_processors = load_model_and_preprocess(\"blip2_image_text_matching\", \"coco\", device=device, is_eval=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Preprocess image and text inputs"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "img = vis_processors[\"eval\"](raw_image).unsqueeze(0).to(device)\n",
    "txt = text_processors[\"eval\"](caption)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Compute image-text matching (ITM) score"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "itm_output = model({\"image\": img, \"text_input\": txt}, match_head=\"itm\")\n",
    "itm_scores = torch.nn.functional.softmax(itm_output, dim=1)\n",
    "print(f'The image and text are matched with a probability of {itm_scores[:, 1].item():.3%}')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "itc_score = model({\"image\": img, \"text_input\": txt}, match_head='itc')\n",
    "print('The image feature and text feature has a cosine similarity of %.4f'%itc_score)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.13"
  },
  "vscode": {
   "interpreter": {
    "hash": "d4d1e4263499bec80672ea0156c357c1ee493ec2b1c70f0acce89fc37c4a6abe"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}