blip2_feature_extraction.ipynb 3.45 KB
Newer Older
dongchy920's avatar
dongchy920 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch\n",
    "from PIL import Image\n",
    "\n",
    "from lavis.models import load_model_and_preprocess"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Load an example image"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "raw_image = Image.open(\"../docs/_static/merlion.png\").convert(\"RGB\")\n",
    "caption = \"a large fountain spewing water into the air\"\n",
    "\n",
    "display(raw_image.resize((596, 437)))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# setup device to use\n",
    "device = torch.device(\"cuda\") if torch.cuda.is_available() else \"cpu\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "model, vis_processors, txt_processors = load_model_and_preprocess(name=\"blip2_feature_extractor\", model_type=\"pretrain\", is_eval=True, device=device)\n",
    "image = vis_processors[\"eval\"](raw_image).unsqueeze(0).to(device)\n",
    "text_input = txt_processors[\"eval\"](caption)\n",
    "sample = {\"image\": image, \"text_input\": [text_input]}"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Multimodal features"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "features_multimodal = model.extract_features(sample)\n",
    "print(features_multimodal.multimodal_embeds.shape)\n",
    "# torch.Size([1, 32, 768]), 32 is the number of queries"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Unimodal features"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "features_image = model.extract_features(sample, mode=\"image\")\n",
    "features_text = model.extract_features(sample, mode=\"text\")\n",
    "print(features_image.image_embeds.shape)\n",
    "# torch.Size([1, 32, 768])\n",
    "print(features_text.text_embeds.shape)\n",
    "# torch.Size([1, 12, 768])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Normalized low-dimensional unimodal features"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# low-dimensional projected features\n",
    "print(features_image.image_embeds_proj.shape)\n",
    "# torch.Size([1, 32, 256])\n",
    "print(features_text.text_embeds_proj.shape)\n",
    "# torch.Size([1, 12, 256])\n",
    "similarity = (features_image.image_embeds_proj @ features_text.text_embeds_proj[:,0,:].t()).max()\n",
    "print(similarity)\n",
    "# tensor([[0.3642]])"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.13"
  },
  "vscode": {
   "interpreter": {
    "hash": "d4d1e4263499bec80672ea0156c357c1ee493ec2b1c70f0acce89fc37c4a6abe"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}