scienceqa_data_preprocess.py 3.51 KB
Newer Older
dongchy920's avatar
dongchy920 committed
1
2
3
import json
from tqdm import tqdm
    
4
with open("/input/scienceqa/scienceqa_problems_path.json", 'r') as file:
dongchy920's avatar
dongchy920 committed
5
6
    data = json.load(file)
    
7
with open("/input/scienceqa/scienceqa_pid_splits.json") as file:
dongchy920's avatar
dongchy920 committed
8
9
10
11
12
13
14
15
16
17
18
19
20
    pid_splits = json.load(file)

train_ids = pid_splits['train']
val_ids = pid_splits['val']
test_ids = pid_splits['test']

# make train annotation

train_annotation = []
for id in tqdm(train_ids):
    train_data = data[str(id)]
    if train_data['image'] is None:
        continue
21
    image_url = f"/input/scienceqa/images/train/{id}/image.png"
dongchy920's avatar
dongchy920 committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
    if train_data['answer'] == 0:
        answer = "(a) " + train_data['choices'][train_data['answer']]
    elif train_data['answer'] == 1:
       answer = "(b) " + train_data['choices'][train_data['answer']]
    elif train_data['answer'] == 2:
       answer = "(c) " + train_data['choices'][train_data['answer']]
    elif train_data['answer'] == 3:
        answer = "(d) " + train_data['choices'][train_data['answer']]
    else:
        answer = "(e) " + train_data['choices'][train_data['answer']]
    ann = {
        "image": image_url,
        "question": train_data['question'],
        "answer" : answer,
        "choices": train_data['choices'],
        "context" : train_data['hint'] + " " + train_data['lecture'],
        "question_id" : id
    }
    train_annotation.append(ann)

# make val annotation

val_annotation = []
for id in tqdm(val_ids):
    val_data = data[str(id)]
    if val_data['image'] is None:
        continue
49
    image_url = f"/input/scienceqa/images/val/{id}/image.png"
dongchy920's avatar
dongchy920 committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
    if val_data['answer'] == 0:
        answer = "(a) " + val_data['choices'][val_data['answer']]
    elif val_data['answer'] == 1:
       answer = "(b) " + val_data['choices'][val_data['answer']]
    elif val_data['answer'] == 2:
       answer = "(c) " + val_data['choices'][val_data['answer']]
    elif val_data['answer'] == 3:
       answer = "(d) " + val_data['choices'][val_data['answer']]
    else:
        answer = "(e) " + val_data['choices'][val_data['answer']]
    ann = {
        "image": image_url,
        "question": val_data['question'],
        "answer" : answer,
        "choices": val_data['choices'],
        "context" : val_data['hint']+ " " + val_data['lecture'],
        "question_id" : id
    }
    val_annotation.append(ann)
    
# make test annotation

test_annotation = []
for id in tqdm(test_ids):
    test_data = data[str(id)]
    if test_data['image'] is None:
        continue
77
    image_url = f"/input/scienceqa/images/test/{id}/image.png"
dongchy920's avatar
dongchy920 committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
    if test_data['answer'] == 0:
        answer = "(a) " + test_data['choices'][test_data['answer']]
    elif test_data['answer'] == 1:
       answer = "(b) " + test_data['choices'][test_data['answer']]
    elif test_data['answer'] == 2:
       answer = "(c) " + test_data['choices'][test_data['answer']]
    elif test_data['answer'] == 3:
       answer = "(d) " + test_data['choices'][test_data['answer']]
    else:
        answer = "(e) " + test_data['choices'][test_data['answer']]
    ann = {
        "image": image_url,
        "question": test_data['question'],
        "answer" : answer,
        "choices": test_data['choices'],
        "context" :test_data['hint']+ " " + test_data['lecture'],
        "question_id" : id
    }
    test_annotation.append(ann)

with open("/input/scienceqa/scienceqa_train.json", 'w') as file:
    json.dump(train_annotation, file)

with open("/input/scienceqa/scienceqa_test.json", 'w') as file:
    json.dump(test_annotation, file)

with open("/input/scienceqa/scienceqa_val.json", 'w') as file:
105
    json.dump(val_annotation, file)