infer_vllm.py 16.9 KB
Newer Older
yangzhong's avatar
yangzhong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
import os
import re
import time
from subprocess import CalledProcessError
import traceback
from typing import List

import numpy as np
import sentencepiece as spm
import torch
import torchaudio
from torch.nn.utils.rnn import pad_sequence
from omegaconf import OmegaConf
from tqdm import tqdm

import warnings

warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)

from indextts.BigVGAN.models import BigVGAN as Generator
from indextts.gpt.model_vllm import UnifiedVoice
from indextts.utils.checkpoint import load_checkpoint
from indextts.utils.feature_extractors import MelSpectrogramFeatures

from indextts.utils.front import TextNormalizer, TextTokenizer

import matplotlib.pyplot as plt


# def fade_in_out(wav, fade_in=int(24000*0.05), fade_out=int(24000*0.05)):
#     wav = wav.astype(np.float32)
#     print("wav", np.abs(wav).max(), np.abs(wav).mean(), np.abs(wav).min())
    
#     if fade_in > 0:
#         wav[:fade_in] *= np.linspace(0, 1, fade_in)[:, None]
    
#     if fade_out > 0:
#         wav[-fade_out:] *= np.linspace(1, 0, fade_out)[:, None]
    
#     wav = np.clip(wav, -32768, 32767).astype(np.int16)
#     wav = np.concatenate([np.zeros((int(0.4 * 24000), 1)), wav], axis=0).astype(np.int16)
#     return wav

def trim_and_pad_silence(wav_data, threshold=1000, min_silence=int(24000*0.4)):
    # # 1. 去除前端静音
    # abs_data = np.abs(wav_data).flatten()
    # first_non_silent = np.argmax(abs_data >= threshold)  # 第一个≥threshold的索引
    # wav_data = wav_data[max(0, first_non_silent-int(24000*0.1)):]  # 切片保留后端
    
    # 2. 处理后端静音
    abs_trimmed = np.abs(wav_data).flatten()
    last_non_silent = len(abs_trimmed) - np.argmax(abs_trimmed[::-1] >= threshold)  # 最后一个≥threshold的索引+1
    
    # 计算后端静音长度
    back_silence_length = len(wav_data) - last_non_silent
    if back_silence_length < min_silence:
        pad_length = min_silence - back_silence_length
        padded = np.vstack([wav_data, np.zeros((pad_length, 1))])  # 补0
    else:
        padded = wav_data
    
    return padded.astype(np.int16)


class IndexTTS:
    def __init__(
        self, model_dir="checkpoints", is_fp16=True, device=None, use_cuda_kernel=None, gpu_memory_utilization=0.25
    ):
        """
        Args:
            cfg_path (str): path to the config file.
            model_dir (str): path to the model directory.
            is_fp16 (bool): whether to use fp16.
            device (str): device to use (e.g., 'cuda:0', 'cpu'). If None, it will be set automatically based on the availability of CUDA or MPS.
            use_cuda_kernel (None | bool): whether to use BigVGan custom fused activation CUDA kernel, only for CUDA device.
        """
        if device is not None:
            self.device = device
            self.is_fp16 = False if device == "cpu" else is_fp16
            self.use_cuda_kernel = use_cuda_kernel is not None and use_cuda_kernel and device.startswith("cuda")
        elif torch.cuda.is_available():
            self.device = "cuda:0"
            self.is_fp16 = is_fp16
            self.use_cuda_kernel = use_cuda_kernel is None or use_cuda_kernel
        elif hasattr(torch, "mps") and torch.backends.mps.is_available():
            self.device = "mps"
            self.is_fp16 = False # Use float16 on MPS is overhead than float32
            self.use_cuda_kernel = False
        else:
            self.device = "cpu"
            self.is_fp16 = False
            self.use_cuda_kernel = False
            print(">> Be patient, it may take a while to run in CPU mode.")

        cfg_path = os.path.join(model_dir, "config.yaml")
        self.cfg = OmegaConf.load(cfg_path)
        self.model_dir = model_dir
        self.dtype = torch.float16 if self.is_fp16 else None
        self.stop_mel_token = self.cfg.gpt.stop_mel_token

        from vllm.engine.arg_utils import AsyncEngineArgs
        from vllm.v1.engine.async_llm import AsyncLLM

        vllm_dir = os.path.join(model_dir, "gpt")
        engine_args = AsyncEngineArgs(
            model=vllm_dir,
            tensor_parallel_size=1,
            dtype="auto",
            gpu_memory_utilization=gpu_memory_utilization,
            # enforce_eager=True,
        )
        indextts_vllm = AsyncLLM.from_engine_args(engine_args)

        self.gpt = UnifiedVoice(indextts_vllm, **self.cfg.gpt, model_dir=model_dir)
        self.gpt_path = os.path.join(self.model_dir, self.cfg.gpt_checkpoint)
        load_checkpoint(self.gpt, self.gpt_path)
        self.gpt = self.gpt.to(self.device)
        # if self.is_fp16:
        #     self.gpt.eval().half()
        # else:
        #     self.gpt.eval()
        self.gpt.eval()
        print(">> GPT weights restored from:", self.gpt_path)

        if self.use_cuda_kernel:
            # preload the CUDA kernel for BigVGAN
            try:
                from indextts.BigVGAN.alias_free_activation.cuda import load

                anti_alias_activation_cuda = load.load()
                print(">> Preload custom CUDA kernel for BigVGAN", anti_alias_activation_cuda)
            except Exception as ex:
                traceback.print_exc()
                print(">> Failed to load custom CUDA kernel for BigVGAN. Falling back to torch.")
                self.use_cuda_kernel = False
        self.bigvgan = Generator(self.cfg.bigvgan, use_cuda_kernel=self.use_cuda_kernel)
        self.bigvgan_path = os.path.join(self.model_dir, self.cfg.bigvgan_checkpoint)
        vocoder_dict = torch.load(self.bigvgan_path, map_location="cpu")
        self.bigvgan.load_state_dict(vocoder_dict["generator"])
        self.bigvgan = self.bigvgan.to(self.device)
        # remove weight norm on eval mode
        self.bigvgan.remove_weight_norm()
        self.bigvgan.eval()
        print(">> bigvgan weights restored from:", self.bigvgan_path)
        self.bpe_path = os.path.join(self.model_dir, "bpe.model")  # self.cfg.dataset["bpe_model"]
        self.normalizer = TextNormalizer()
        self.normalizer.load()
        print(">> TextNormalizer loaded")
        self.tokenizer = TextTokenizer(self.bpe_path, self.normalizer)
        print(">> bpe model loaded from:", self.bpe_path)

        self.speaker_dict = {}
    
    def remove_long_silence(self, codes: list, latent: torch.Tensor, max_consecutive=15, silent_token=52):
        assert latent.dim() == 3 and latent.size(0) == 1, "Latent should be (1, seq_len, dim)"
        seq_len, dim = latent.size(1), latent.size(2)
        # print("latent", latent.shape)
        
        if self.stop_mel_token in codes:
            try:
                stop_idx = codes.index(self.stop_mel_token)
                valid_len = max(stop_idx - 1, 0)  # 保留至停止标记前一位
            except ValueError:
                valid_len = len(codes)
        else:
            valid_len = len(codes)
        
        valid_codes = codes[:min(valid_len, len(codes))]
        valid_latent = latent[0, :seq_len]  # 保持维度兼容性
        
        keep_indices = []
        silence_counter = 0
        
        for idx, token in enumerate(valid_codes):
            if token == silent_token:
                silence_counter += 1
            else:
                silence_counter = 0
            
            if silence_counter <= max_consecutive:
                keep_indices.append(idx)
        
        filtered_latent = valid_latent[keep_indices].unsqueeze(0)  # [1, new_seq, dim]
        # print("filtered_latent", filtered_latent.shape)
        return filtered_latent

    async def infer(self, audio_prompt: List[str], text, output_path=None, verbose=False, seed=None):
        print(">> start inference...")
        start_time = time.perf_counter()

        auto_conditioning = []
        for ap_ in audio_prompt:
            audio, sr = torchaudio.load(ap_)
            audio = torch.mean(audio, dim=0, keepdim=True)
            if audio.shape[0] > 1:
                audio = audio[0].unsqueeze(0)
            audio = torchaudio.transforms.Resample(sr, 24000)(audio)
            cond_mel = MelSpectrogramFeatures()(audio).to(self.device)
            # cond_mel_frame = cond_mel.shape[-1]
            auto_conditioning.append(cond_mel)

        text_tokens_list = self.tokenizer.tokenize(text)
        sentences = self.tokenizer.split_sentences(text_tokens_list)
        sampling_rate = 24000
        # lang = "EN"
        # lang = "ZH"
        wavs = []
        gpt_gen_time = 0
        bigvgan_time = 0

        speech_conditioning_latent = []
        for cond_mel in auto_conditioning:
            speech_conditioning_latent_ = self.gpt.get_conditioning(
                cond_mel,  # .half()
                torch.tensor([cond_mel.shape[-1]], device=self.device)
            )
            speech_conditioning_latent.append(speech_conditioning_latent_)
        speech_conditioning_latent = torch.stack(speech_conditioning_latent).sum(dim=0)
        speech_conditioning_latent = speech_conditioning_latent / len(auto_conditioning)

        for sent in sentences:
            text_tokens = self.tokenizer.convert_tokens_to_ids(sent)
            text_tokens = torch.tensor(text_tokens, dtype=torch.int32, device=self.device).unsqueeze(0)

            m_start_time = time.perf_counter()
            with torch.no_grad():
                # 设置采样参数的seed
                if seed is not None:
                    self.gpt.sampling_params.seed = int(seed)
                else:
                    self.gpt.sampling_params.seed = None
                codes = await self.gpt.inference_speech(
                    speech_conditioning_latent,
                    text_tokens,
                    # cond_mel_lengths=torch.tensor([auto_conditioning.shape[-1]], device=text_tokens.device)
                )
                gpt_gen_time += time.perf_counter() - m_start_time

                # # remove ultra-long silence if exits
                # # temporarily fix the long silence bug.
                # latent = self.remove_long_silence(codes, latent)

                codes = torch.tensor(codes, dtype=torch.long, device=self.device).unsqueeze(0)
                code_lens = torch.tensor([codes.shape[-1]], device=codes.device, dtype=codes.dtype)
                latent = self.gpt(speech_conditioning_latent, text_tokens,
                                torch.tensor([text_tokens.shape[-1]], device=text_tokens.device), codes,
                                code_lens*self.gpt.mel_length_compression,
                                cond_mel_lengths=torch.tensor([speech_conditioning_latent.shape[-1]], device=text_tokens.device),
                                return_latent=True, clip_inputs=False)

                m_start_time = time.perf_counter()
                wav, _ = self.bigvgan(latent, [ap_.transpose(1, 2) for ap_ in auto_conditioning])
                bigvgan_time += time.perf_counter() - m_start_time
                wav = wav.squeeze(1)

                wav = torch.clamp(32767 * wav, -32767.0, 32767.0)
                print(f"wav shape: {wav.shape}", "min:", wav.min(), "max:", wav.max())
                # wavs.append(wav[:, :-512])
                wavs.append(wav.cpu())  # to cpu before saving
        torch.cuda.empty_cache()
        end_time = time.perf_counter()

        wav = torch.cat(wavs, dim=1)
        wav_length = wav.shape[-1] / sampling_rate
        print(f">> gpt_gen_time: {gpt_gen_time:.2f} seconds")
        print(f">> bigvgan_time: {bigvgan_time:.2f} seconds")
        print(f">> Total inference time: {end_time - start_time:.2f} seconds")
        print(f">> Generated audio length: {wav_length:.2f} seconds")
        print(f">> RTF: {(end_time - start_time) / wav_length:.4f}")

        # save audio
        wav = wav.cpu()  # to cpu
        if output_path:
            # 直接保存音频到指定路径中
            if os.path.isfile(output_path):
                os.remove(output_path)
                print(">> remove old wav file:", output_path)
            if os.path.dirname(output_path) != "":
                os.makedirs(os.path.dirname(output_path), exist_ok=True)
            torchaudio.save(output_path, wav.type(torch.int16), sampling_rate)
            print(">> wav file saved to:", output_path)
            return output_path
        else:
            # 返回以符合Gradio的格式要求
            wav_data = wav.type(torch.int16)
            wav_data = wav_data.numpy().T
            wav_data = trim_and_pad_silence(wav_data)
            return (sampling_rate, wav_data)
        
    async def infer_with_ref_audio_embed(self, speaker: str, text):
        start_time = time.perf_counter()
        text = text.replace("嗯", "EN4")
        text = text.replace("嘿", "HEI1")
        text = text.replace("嗨", "HAI4")
        text = text.replace("哈哈", "HA1HA1")
        sampling_rate = 24000

        auto_conditioning = self.speaker_dict[speaker]["auto_conditioning"]

        text_tokens_list = self.tokenizer.tokenize(text)
        sentences = self.tokenizer.split_sentences(text_tokens_list)
        wavs = []
        gpt_gen_time = 0
        bigvgan_time = 0

        speech_conditioning_latent = self.speaker_dict[speaker]["speech_conditioning_latent"]

        for sent in sentences:
            text_tokens = self.tokenizer.convert_tokens_to_ids(sent)
            text_tokens = torch.tensor(text_tokens, dtype=torch.int32, device=self.device).unsqueeze(0)

            m_start_time = time.perf_counter()
            with torch.no_grad():
                codes = await self.gpt.inference_speech(
                    speech_conditioning_latent,
                    text_tokens,
                    # cond_mel_lengths=torch.tensor([auto_conditioning.shape[-1]], device=text_tokens.device)
                )
                gpt_gen_time += time.perf_counter() - m_start_time

                # # remove ultra-long silence if exits
                # # temporarily fix the long silence bug.
                # latent = self.remove_long_silence(codes, latent)

                codes = torch.tensor(codes, dtype=torch.long, device=self.device).unsqueeze(0)
                code_lens = torch.tensor([codes.shape[-1]], device=codes.device, dtype=codes.dtype)
                latent = self.gpt(speech_conditioning_latent, text_tokens,
                                torch.tensor([text_tokens.shape[-1]], device=text_tokens.device), codes,
                                code_lens*self.gpt.mel_length_compression,
                                cond_mel_lengths=torch.tensor([speech_conditioning_latent.shape[-1]], device=text_tokens.device),
                                return_latent=True, clip_inputs=False)

                m_start_time = time.perf_counter()
                wav, _ = self.bigvgan(latent, [ap_.transpose(1, 2) for ap_ in auto_conditioning])
                bigvgan_time += time.perf_counter() - m_start_time
                wav = wav.squeeze(1)

                wav = torch.clamp(32767 * wav, -32767.0, 32767.0)
                # wavs.append(wav[:, :-512])
                wavs.append(wav)  # to cpu before saving
        torch.cuda.empty_cache()
        end_time = time.perf_counter()

        wav = torch.cat(wavs, dim=1)
        # wav_length = wav.shape[-1] / sampling_rate
        # # print(f">> Total inference time: {end_time - start_time:.2f} seconds")
        # print(f">> gpt_gen_time: {gpt_gen_time:.2f} seconds")
        # print(f">> bigvgan_time: {bigvgan_time:.2f} seconds")
        # print(f">> Total inference time: {end_time - start_time:.2f} seconds")
        # print(f">> Generated audio length: {wav_length:.2f} seconds")
        # print(f">> RTF: {(end_time - start_time) / wav_length:.4f}")

        # save audio
        wav = wav.cpu()  # to cpu
        wav_data = wav.type(torch.int16)
        wav_data = wav_data.numpy().T
        wav_data = trim_and_pad_silence(wav_data)
        return (sampling_rate, wav_data)
    
    @torch.no_grad()
    def registry_speaker(self, speaker: str, audio_paths: List[str]):
        auto_conditioning = []
        for ap_ in audio_paths:
            audio, sr = torchaudio.load(ap_)
            audio = torch.mean(audio, dim=0, keepdim=True)
            if audio.shape[0] > 1:
                audio = audio[0].unsqueeze(0)
            audio = torchaudio.transforms.Resample(sr, 24000)(audio)
            cond_mel = MelSpectrogramFeatures()(audio).to(self.device)
            # cond_mel_frame = cond_mel.shape[-1]
            auto_conditioning.append(cond_mel)

        speech_conditioning_latent = []
        for cond_mel in auto_conditioning:
            speech_conditioning_latent_ = self.gpt.get_conditioning(
                cond_mel,  # .half()
                torch.tensor([cond_mel.shape[-1]], device=self.device)
            )
            speech_conditioning_latent.append(speech_conditioning_latent_)
        speech_conditioning_latent = torch.stack(speech_conditioning_latent).sum(dim=0)
        speech_conditioning_latent = speech_conditioning_latent / len(auto_conditioning)

        self.speaker_dict[speaker] = {
            "auto_conditioning": auto_conditioning,
            "speech_conditioning_latent": speech_conditioning_latent
        }
        print(f"Speaker: {speaker} registered")