model_vllm.py 12.3 KB
Newer Older
yangzhong's avatar
yangzhong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import uuid
import os
import functools
import patch_vllm  # ⚠️ Monkey Patch, do not delete this line

import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import AutoModelForCausalLM, GPT2Config, GPT2LMHeadModel, LogitsProcessorList

from transformers import GPT2Config, GPT2Model

from indextts.gpt.conformer_encoder import ConformerEncoder
from indextts.gpt.perceiver import PerceiverResampler

from indextts.gpt.index_tts_gpt2_vllm_v1 import PLACEHOLDER_TOKEN, PLACEHOLDER_TOKEN_ID

from vllm import AsyncLLMEngine, SamplingParams, TokensPrompt
from vllm.v1.engine.async_llm import AsyncLLM


def null_position_embeddings(range, dim):
    return torch.zeros((range.shape[0], range.shape[1], dim), device=range.device)
    

class LearnedPositionEmbeddings(nn.Module):
    def __init__(self, seq_len, model_dim, init=.02):
        super().__init__()
        self.emb = nn.Embedding(seq_len, model_dim)
        # Initializing this way is standard for GPT-2
        self.emb.weight.data.normal_(mean=0.0, std=init)

    def forward(self, x):
        sl = x.shape[1]
        return self.emb(torch.arange(0, sl, device=x.device))

    def get_fixed_embedding(self, ind, dev):
        return self.emb(torch.tensor([ind], device=dev)).unsqueeze(0)


class UnifiedVoice(nn.Module):
    def __init__(self, vllm_model,
                 layers=8, model_dim=512, heads=8, max_text_tokens=120, max_mel_tokens=250, max_conditioning_inputs=1,
                 mel_length_compression=1024, number_text_tokens=256,
                 start_text_token=0, stop_text_token=1, number_mel_codes=8194, start_mel_token=8192, stop_mel_token=8193,
                 types=1, activation_function=None,
                 model_dir=None,
                 condition_num_latent=32, condition_module=None, **kwargs):
        """
        Args:
            layers: Number of layers in transformer stack.
            model_dim: Operating dimensions of the transformer
            heads: Number of transformer heads. Must be divisible by model_dim. Recommend model_dim//64
            max_text_tokens: Maximum number of text tokens that will be encountered by model.
            max_mel_tokens: Maximum number of MEL tokens that will be encountered by model.
            max_conditioning_inputs: Maximum number of conditioning inputs provided to the model. If (1), conditioning input can be of format (b,80,s), otherwise (b,n,80,s).
            mel_length_compression: The factor between <number_input_samples> and <mel_tokens>. Used to compute MEL code padding given wav input length.
            number_text_tokens:
            start_text_token:
            stop_text_token:
            number_mel_codes:
            start_mel_token:
            stop_mel_token:
            checkpointing:
        """
        super().__init__()
        self.number_text_tokens = number_text_tokens
        self.start_text_token = start_text_token
        self.stop_text_token = stop_text_token
        self.number_mel_codes = number_mel_codes
        self.start_mel_token = start_mel_token
        self.stop_mel_token = stop_mel_token
        self.layers = layers
        self.heads = heads
        self.max_mel_tokens = max_mel_tokens
        self.max_text_tokens = max_text_tokens
        self.model_dim = model_dim
        self.max_conditioning_inputs = max_conditioning_inputs
        self.mel_length_compression = mel_length_compression
        self.cond_num = condition_num_latent
        self.cond_mask_pad = nn.ConstantPad1d((self.cond_num, 0), True)

        self.conditioning_encoder = ConformerEncoder(input_size=100,
                                                        output_size=condition_module['output_size'],
                                                        linear_units=condition_module['linear_units'],
                                                        attention_heads=condition_module['attention_heads'],
                                                        num_blocks=condition_module['num_blocks'],
                                                        input_layer=condition_module['input_layer'])
        self.perceiver_encoder = PerceiverResampler(model_dim, dim_context=condition_module['output_size'],
                                                    ff_mult=condition_module['perceiver_mult'],
                                                    heads=condition_module['attention_heads'],
                                                    num_latents=self.cond_num)

        self.text_embedding = nn.Embedding(self.number_text_tokens * types + 1, model_dim)
        self.mel_embedding = nn.Embedding(self.number_mel_codes, model_dim)

        max_mel_seq_len = self.max_mel_tokens + 2 + self.max_conditioning_inputs
        max_text_seq_len = self.max_text_tokens + 2
        gpt_config = GPT2Config(vocab_size=256,  # Unused.
                                n_positions=max_mel_seq_len + max_text_seq_len,
                                n_ctx=max_mel_seq_len + max_text_seq_len,
                                n_embd=model_dim,
                                n_layer=layers,
                                n_head=heads,
                                activation_function=activation_function or "gelu_new",
                                gradient_checkpointing=False,
                                use_cache=True)
        self.gpt = GPT2Model(gpt_config)
        # self.gpt = AutoModelForCausalLM.from_pretrained(
        #     os.path.join(model_dir, "gpt"),
        #     # torch_dtype=torch.float16,
        #     # device_map="auto",
        #     # trust_remote_code=True,          # 若自定义模型类需打开
        # ).transformer
        del self.gpt.wpe
        self.gpt.wpe = functools.partial(null_position_embeddings, dim=model_dim)
        del self.gpt.wte
        # self.gpt = self.gpt.to("cuda")  # .to(torch.float16)
        # self.gpt.eval()

        self.mel_pos_embedding, self.text_pos_embedding  = LearnedPositionEmbeddings(max_mel_seq_len, model_dim), LearnedPositionEmbeddings(max_text_seq_len, model_dim)

        self.mel_solo_embedding = 0
        self.text_solo_embedding = 0

        self.final_norm = nn.LayerNorm(model_dim)  # , dtype=torch.float16
        self.text_head = nn.Linear(model_dim, self.number_text_tokens * types + 1)
        self.mel_head = nn.Linear(model_dim, self.number_mel_codes)

        # Initialize the embeddings per the GPT-2 scheme
        embeddings = [self.text_embedding, self.mel_embedding]
        for module in embeddings:
            module.weight.data.normal_(mean=0.0, std=.02)

        self.llm: AsyncLLM = vllm_model
        self.sampling_params = SamplingParams(
            temperature=1.0,
            top_p=0.8,
            top_k=30,  # 5, 30
            repetition_penalty=10.0,  # 8.0
            max_tokens=768,  # 605
        )

    def build_aligned_inputs_and_targets(self, input, start_token, stop_token):
        inp = F.pad(input, (1, 0), value=start_token)
        tar = F.pad(input, (0, 1), value=stop_token)
        return inp, tar

    def get_conditioning(self, speech_conditioning_input, cond_mel_lengths=None):
        speech_conditioning_input, mask = self.conditioning_encoder(speech_conditioning_input.transpose(1, 2),
                                                                    cond_mel_lengths)  # (b, s, d), (b, 1, s)
        conds_mask = self.cond_mask_pad(mask.squeeze(1))
        conds = self.perceiver_encoder(speech_conditioning_input, conds_mask)  # (b, 32, d)
        return conds

    async def inference_speech(self, speech_conditioning_latent, text_inputs, cond_mel_lengths=None):
        text_inputs, _ = self.build_aligned_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token)
        text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs)

        # speech_conditioning_latent = self.get_conditioning(speech_conditioning_latent, cond_mel_lengths)
        emb = torch.cat([speech_conditioning_latent, text_emb], dim=1)
        # trunc_index = emb.shape[1] + 1

        mel_start_emb = self.mel_embedding(torch.full((emb.shape[0], 1,), fill_value=self.start_mel_token, dtype=torch.long, device=text_inputs.device))
        mel_start_emb = mel_start_emb + self.mel_pos_embedding(mel_start_emb)
        inputs_embeds = torch.cat([emb, mel_start_emb], dim=1)

        # fake_inputs = [idx for idx in range(inputs_embeds.shape[1])]
        fake_inputs = PLACEHOLDER_TOKEN * 1  # [PLACEHOLDER_TOKEN_ID]
        multi_modal_data = {"audio": {"audio_embeds": [inputs_embeds.squeeze(0).cpu()]}}
        tokens_prompt = TokensPrompt(prompt=fake_inputs, multi_modal_data=multi_modal_data)
        # tokens_prompt = TokensPrompt(prompt_token_ids=fake_inputs, multi_modal_data=multi_modal_data)
        output_generator = self.llm.generate(tokens_prompt, sampling_params=self.sampling_params, request_id=uuid.uuid4().hex)
        # latent = []
        async for output in output_generator:
            # latent.append(output.hidden_states.clone())
            pass
        codes = output.outputs[0].token_ids[:-2]

        # latent = torch.cat(latent[:-2], dim=0).unsqueeze(0)
        # # latent = self.final_norm(latent.float())
        # latent = latent.float()
        # print("codes", len(codes), codes)
        # print("latent", latent.shape, latent)
        return codes  # , latent

    def set_mel_padding(self, mel_input_tokens, mel_lengths):
        """
        Given mel tokens that are derived from a padded audio clip and the actual lengths of each batch element in
        that audio clip, reformats the tokens with STOP_MEL_TOKEN in place of the zero padding. This is required
        preformatting to create a working TTS model.
        """
        for b in range(len(mel_lengths)):
            # Due to the convolutional nature of how these tokens are generated,
            # it would be best if the model predicts a token past the actual last token.
            actual_end = mel_lengths[b]
            if actual_end < mel_input_tokens.shape[-1]:
                mel_input_tokens[b, actual_end:] = self.stop_mel_token
        return mel_input_tokens

    def set_text_padding(self, text_input_tokens, text_lengths):
        """
        Given mel tokens that are derived from a padded audio clip and the actual lengths of each batch element in
        that audio clip, reformats the tokens with STOP_MEL_TOKEN in place of the zero padding. This is required
        preformatting to create a working TTS model.
        """
        for b in range(len(text_lengths)):
            # Due to the convolutional nature of how these tokens are generated,
            # it would be best if the model predicts a token past the actual last token.
            actual_end = text_lengths[b]
            if actual_end < text_input_tokens.shape[-1]:
                text_input_tokens[b, actual_end:] = self.stop_text_token
        return text_input_tokens

    def forward(self, speech_conditioning_latent, text_inputs, text_lengths, mel_codes, wav_lengths,
                cond_mel_lengths=None, types=None, text_first=True, raw_mels=None, return_attentions=False,
                return_latent=True, clip_inputs=False):
        # Set padding areas within MEL (currently it is coded with the MEL code for <zero>).
        # mel_codes_lengths = torch.div(wav_lengths, self.mel_length_compression, rounding_mode='trunc')
        mel_codes_lengths = torch.ceil(wav_lengths / self.mel_length_compression).long() + 1
        mel_codes = self.set_mel_padding(mel_codes, mel_codes_lengths)

        text_inputs = self.set_text_padding(text_inputs, text_lengths)
        text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token)
        mel_codes = F.pad(mel_codes, (0, 1), value=self.stop_mel_token)

        conds = speech_conditioning_latent
        text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token)
        text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs)
        mel_codes, mel_targets = self.build_aligned_inputs_and_targets(mel_codes, self.start_mel_token, self.stop_mel_token)
        mel_inp = mel_codes
        mel_emb = self.mel_embedding(mel_inp)
        mel_emb = mel_emb + self.mel_pos_embedding(mel_codes)

        emb = torch.cat([conds, text_emb, mel_emb], dim=1)
        gpt_out = self.gpt(inputs_embeds=emb, return_dict=True)
        offset = conds.shape[1]
        enc = gpt_out.last_hidden_state[:, offset:]
        enc = self.final_norm(enc)
        
        return enc[:, -mel_emb.shape[1]:][:, :-2]