preact_resnet.py 8.65 KB
Newer Older
sunxx1's avatar
sunxx1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import torch.nn as nn
import math

__all__ = [
    'preact_resnet18', 'preact_resnet34', 'preact_resnet50',
    'preact_resnet101', 'preact_resnet152'
]


def conv3x3(in_planes, out_planes, stride=1):
    "3x3 convolution with padding"
    return nn.Conv2d(in_planes,
                     out_planes,
                     kernel_size=3,
                     stride=stride,
                     padding=1,
                     bias=False)


class PreactBasicBlock(nn.Module):
    expansion = 1

    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 downsample=None,
                 preactivate=True):
        super(PreactBasicBlock, self).__init__()
        self.pre_bn = self.pre_relu = None
        if preactivate:
            self.pre_bn = nn.BatchNorm2d(inplanes)
            self.pre_relu = nn.ReLU(inplace=True)
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.downsample = downsample
        self.stride = stride
        self.preactivate = preactivate

    def forward(self, x):
        if self.preactivate:
            preact = self.pre_bn(x)
            preact = self.pre_relu(preact)
        else:
            preact = x

        out = self.conv1(preact)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)

        if self.downsample is not None:
            residual = self.downsample(preact)
        else:
            residual = x

        out += residual

        return out


class PreactBottleneck(nn.Module):
    expansion = 4

    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 downsample=None,
                 preactivate=True):
        super(PreactBottleneck, self).__init__()
        self.pre_bn = self.pre_relu = None
        if preactivate:
            self.pre_bn = nn.BatchNorm2d(inplanes)
            self.pre_relu = nn.ReLU(inplace=True)
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes,
                               planes,
                               kernel_size=3,
                               stride=stride,
                               padding=1,
                               bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
        self.relu1 = nn.ReLU(inplace=True)
        self.relu2 = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride
        self.preactivate = preactivate

    def forward(self, x):
        if self.preactivate:
            preact = self.pre_bn(x)
            preact = self.pre_relu(preact)
        else:
            preact = x

        out = self.conv1(preact)
        out = self.bn1(out)
        out = self.relu1(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu2(out)

        out = self.conv3(out)

        if self.downsample is not None:
            residual = self.downsample(preact)
        else:
            residual = x

        out += residual

        return out


class PreactResNet(nn.Module):

    def __init__(self,
                 block,
                 layers,
                 num_classes=1000,
                 deep_stem=False,
                 avg_down=False,
                 bypass_last_bn=False,
                 bn=None):

        super(PreactResNet, self).__init__()

        global bypass_bn_weight_list

        bypass_bn_weight_list = []

        self.inplanes = 64
        self.deep_stem = deep_stem
        self.avg_down = avg_down

        if self.deep_stem:
            self.conv1 = nn.Sequential(
                nn.Conv2d(3,
                          32,
                          kernel_size=3,
                          stride=2,
                          padding=1,
                          bias=False),
                nn.BatchNorm2d(32),
                nn.ReLU(inplace=True),
                nn.Conv2d(32,
                          32,
                          kernel_size=3,
                          stride=1,
                          padding=1,
                          bias=False),
                nn.BatchNorm2d(32),
                nn.ReLU(inplace=True),
                nn.Conv2d(32,
                          64,
                          kernel_size=3,
                          stride=1,
                          padding=1,
                          bias=False),
            )
        else:
            self.conv1 = nn.Conv2d(3,
                                   64,
                                   kernel_size=7,
                                   stride=2,
                                   padding=3,
                                   bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)

        self.final_bn = nn.BatchNorm2d(512 * block.expansion)
        self.final_relu = nn.ReLU(inplace=True)
        self.avgpool = nn.AvgPool2d(7, stride=1)
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
            elif isinstance(m, nn.Linear):
                n = m.weight.size(1)
                m.weight.data.normal_(0, 1.0 / float(n))
                m.bias.data.zero_()

        if bypass_last_bn:
            for param in bypass_bn_weight_list:
                param.data.zero_()

    def _make_layer(self, block, planes, blocks, stride=1, avg_down=False):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            if self.avg_down:
                downsample = nn.Sequential(
                    nn.AvgPool2d(stride,
                                 stride=stride,
                                 ceil_mode=True,
                                 count_include_pad=False),
                    nn.Conv2d(self.inplanes,
                              planes * block.expansion,
                              kernel_size=1,
                              stride=1,
                              bias=False),
                    # BN(planes * block.expansion),
                )
            else:
                downsample = nn.Sequential(
                    nn.Conv2d(self.inplanes,
                              planes * block.expansion,
                              kernel_size=1,
                              stride=stride,
                              bias=False),
                    # BN(planes * block.expansion),
                )

        # On the first residual block in the first residual layer we don't pre-activate,
        # because we take care of that (+ maxpool) after the initial conv layer
        preactivate_first = stride != 1

        layers = []
        layers.append(
            block(self.inplanes, planes, stride, downsample,
                  preactivate_first))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.final_bn(x)
        x = self.final_relu(x)
        x = self.avgpool(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)

        return x


def preact_resnet18(**kwargs):
    model = PreactResNet(PreactBasicBlock, [2, 2, 2, 2], **kwargs)
    return model


def preact_resnet34(**kwargs):
    model = PreactResNet(PreactBasicBlock, [3, 4, 6, 3], **kwargs)
    return model


def preact_resnet50(**kwargs):
    model = PreactResNet(PreactBottleneck, [3, 4, 6, 3], **kwargs)
    return model


def preact_resnet101(**kwargs):
    model = PreactResNet(PreactBottleneck, [3, 4, 23, 3], **kwargs)
    return model


def preact_resnet152(**kwargs):
    model = PreactResNet(PreactBottleneck, [3, 8, 36, 3], **kwargs)
    return model