mobile_v1.py 2.25 KB
Newer Older
sunxx1's avatar
sunxx1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import torch.nn as nn
from torch.nn import init

__all__ = ["mobile_v1"]


class MobileNetV1(nn.Module):

    def __init__(self, scale=1.0, num_classes=1000, bn_group=None):
        super(MobileNetV1, self).__init__()

        BN = nn.BatchNorm2d
        self.scale = scale

        def conv_bn(inp, oup, stride):
            return nn.Sequential(nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
                                 BN(oup), nn.ReLU(inplace=True))

        def conv_dw(inp, oup, stride):
            inp = int(inp * scale)
            oup = int(oup * scale)
            return nn.Sequential(
                nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False),
                BN(inp),
                nn.ReLU(inplace=True),
                nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
                BN(oup),
                nn.ReLU(inplace=True),
            )

        self.model = nn.Sequential(
            conv_bn(3, int(32 * scale), 2),
            conv_dw(32, 64, 1),
            conv_dw(64, 128, 2),
            conv_dw(128, 128, 1),
            conv_dw(128, 256, 2),
            conv_dw(256, 256, 1),
            conv_dw(256, 512, 2),
            conv_dw(512, 512, 1),
            conv_dw(512, 512, 1),
            conv_dw(512, 512, 1),
            conv_dw(512, 512, 1),
            conv_dw(512, 512, 1),
            conv_dw(512, 1024, 2),
            conv_dw(1024, 1024, 1),
            nn.AvgPool2d(7),
        )
        self.fc = nn.Linear(int(1024 * scale), num_classes)
        self.init_params()

    def init_params(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                    init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                init.constant_(m.weight, 1)
                init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                init.normal_(m.weight, std=0.01)
                if m.bias is not None:
                    init.constant_(m.bias, 0)

    def forward(self, x):
        x = self.model(x)
        x = x.view(-1, int(1024 * self.scale))
        x = self.fc(x)
        return x


def mobile_v1(**kwargs):
    model = MobileNetV1(**kwargs)
    return model