mnasnet.py 5.21 KB
Newer Older
sunxx1's avatar
sunxx1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import torch
import torch.nn as nn

__all__ = ['mnasnet']


class _InvertedResidual(nn.Module):

    def __init__(self, in_ch, out_ch, kernel_size, stride, expansion_factor):
        super(_InvertedResidual, self).__init__()
        assert stride in [1, 2]
        assert kernel_size in [3, 5]
        mid_ch = in_ch * expansion_factor
        self.apply_residual = (in_ch == out_ch and stride == 1)
        self.layers = nn.Sequential(
            # Pointwise
            nn.Conv2d(in_ch, mid_ch, 1, bias=False),
            nn.BatchNorm2d(mid_ch),
            nn.ReLU(inplace=True),
            # Depthwise
            nn.Conv2d(mid_ch,
                      mid_ch,
                      kernel_size,
                      padding=kernel_size // 2,
                      stride=stride,
                      groups=mid_ch,
                      bias=False),
            nn.BatchNorm2d(mid_ch),
            nn.ReLU(inplace=True),
            # Linear pointwise. Note that there's no activation.
            nn.Conv2d(mid_ch, out_ch, 1, bias=False),
            nn.BatchNorm2d(out_ch))

    def forward(self, input):
        if self.apply_residual:
            return self.layers(input) + input
        else:
            return self.layers(input)


def _stack(in_ch, out_ch, kernel_size, stride, exp_factor, repeats):
    """ Creates a stack of inverted residuals. """
    assert repeats >= 1
    # First one has no skip, because feature map size changes.
    first = _InvertedResidual(in_ch, out_ch, kernel_size, stride, exp_factor)
    remaining = []
    for _ in range(1, repeats):
        remaining.append(
            _InvertedResidual(out_ch, out_ch, kernel_size, 1, exp_factor))
    return nn.Sequential(first, *remaining)


def _round_to_multiple_of(val, divisor, round_up_bias=0.9):
    """ Asymmetric rounding to make `val` divisible by `divisor`. With default
    bias, will round up, unless the number is no more than 10% greater than the
    smaller divisible value, i.e. (83, 8) -> 80, but (84, 8) -> 88. """
    assert 0.0 < round_up_bias < 1.0
    new_val = max(divisor, int(val + divisor / 2) // divisor * divisor)
    return new_val if new_val >= round_up_bias * val else new_val + divisor


def _get_depths(scale):
    """ Scales tensor depths as in reference MobileNet code, prefers rouding up
    rather than down. """
    depths = [32, 16, 24, 40, 80, 96, 192, 320]
    return [_round_to_multiple_of(depth * scale, 8) for depth in depths]


class MNASNet(torch.nn.Module):
    # Version 2 adds depth scaling in the initial stages of the network.
    _version = 2

    def __init__(self, scale, num_classes=1000, dropout=0.2):
        super(MNASNet, self).__init__()

        assert scale > 0.0
        self.scale = scale
        self.num_classes = num_classes
        depths = _get_depths(scale)
        layers = [
            # First layer: regular conv.
            nn.Conv2d(3, depths[0], 3, padding=1, stride=2, bias=False),
            nn.BatchNorm2d(depths[0]),
            nn.ReLU(inplace=True),
            # Depthwise separable, no skip.
            nn.Conv2d(depths[0],
                      depths[0],
                      3,
                      padding=1,
                      stride=1,
                      groups=depths[0],
                      bias=False),
            nn.BatchNorm2d(depths[0]),
            nn.ReLU(inplace=True),
            nn.Conv2d(depths[0], depths[1], 1, padding=0, stride=1,
                      bias=False),
            nn.BatchNorm2d(depths[1]),
            # MNASNet blocks: stacks of inverted residuals.
            _stack(depths[1], depths[2], 3, 2, 3, 3),
            _stack(depths[2], depths[3], 5, 2, 3, 3),
            _stack(depths[3], depths[4], 5, 2, 6, 3),
            _stack(depths[4], depths[5], 3, 1, 6, 2),
            _stack(depths[5], depths[6], 5, 2, 6, 4),
            _stack(depths[6], depths[7], 3, 1, 6, 1),
            # Final mapping to classifier input.
            nn.Conv2d(depths[7], 1280, 1, padding=0, stride=1, bias=False),
            nn.BatchNorm2d(1280),
            nn.ReLU(inplace=True),
        ]
        self.layers = nn.Sequential(*layers)
        self.classifier = nn.Sequential(nn.Dropout(p=dropout, inplace=True),
                                        nn.Linear(1280, num_classes))
        self._initialize_weights()

    def forward(self, x):
        x = self.layers(x)
        # Equivalent to global avgpool and removing H and W dimensions.
        x = x.mean([2, 3])
        return self.classifier(x)

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight,
                                        mode="fan_out",
                                        nonlinearity="relu")
                if m.bias is not None:
                    nn.init.zeros_(m.bias)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.ones_(m.weight)
                nn.init.zeros_(m.bias)
            elif isinstance(m, nn.Linear):
                nn.init.kaiming_uniform_(m.weight,
                                         mode="fan_out",
                                         nonlinearity="sigmoid")
                nn.init.zeros_(m.bias)


def mnasnet(**kwargs):
    model = MNASNet(**kwargs)
    return model