main.py 13.1 KB
Newer Older
sunxx1's avatar
sunxx1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import os
import shutil
import argparse
import random
import re
import time
import yaml
import json
import socket
import logging
from addict import Dict

import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim
from torch.backends import cudnn

import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP

import models
from utils.dataloader import build_dataloader
from utils.misc import accuracy, check_keys, AverageMeter, ProgressMeter
from utils.loss import LabelSmoothLoss

parser = argparse.ArgumentParser(description='ImageNet Training Example')
parser.add_argument('--config',
                    default='configs/resnet50.yaml',
                    type=str,
                    help='path to config file')
parser.add_argument('--test',
                    dest='test',
                    action='store_true',
                    help='evaluate model on validation set')
parser.add_argument('--port',
                    default=12345,
                    type=int,
                    metavar='P',
                    help='master port')
parser.add_argument('--output',
                    dest='output',
                    default='inception_result.json',
                    help='output json file to hold perf results')
parser.add_argument('--rank', default=0, type=int,
                    help='node rank for distributed training')
logging.basicConfig(format='%(asctime)s %(levelname)s %(message)s')
logger = logging.getLogger()
logger_all = logging.getLogger('all')


def main():
    args = parser.parse_args()
    args.config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
    cfgs = Dict(args.config)

    # args.rank = int(os.environ['LOCAL_RANK'])
    args.world_size = int(os.environ["WORLD_SIZE"])
    args.local_rank = int(os.environ['LOCAL_RANK'])

    # node_list = str(os.environ['SLURM_NODELIST'])
    # node_parts = re.findall('[0-9]+', node_list)
    # os.environ[
    #     'MASTER_ADDR'] = f'{node_parts[1]}.{node_parts[2]}.{node_parts[3]}.{node_parts[4]}'
    # os.environ['MASTER_PORT'] = str(args.port)
    # os.environ['WORLD_SIZE'] = str(args.world_size)
    # os.environ['RANK'] = str(args.rank)

    dist.init_process_group(backend="nccl")
    torch.cuda.set_device(args.local_rank)

    if args.local_rank == 0:
        logger.setLevel(logging.INFO)
    else:
        logger.setLevel(logging.ERROR)
    logger_all.setLevel(logging.INFO)

    logger_all.info("rank {} of {} jobs, in {}".format(args.local_rank,
                                                       args.world_size,
                                                       socket.gethostname()))

    dist.barrier()

    logger.info("config\n{}".format(
        json.dumps(cfgs, indent=2, ensure_ascii=False)))

    if cfgs.get('seed', None):
        random.seed(cfgs.seed)
        torch.manual_seed(cfgs.seed)
        torch.cuda.manual_seed(cfgs.seed)
        cudnn.deterministic = True

    model = models.__dict__[cfgs.net.arch](**cfgs.net.kwargs)
    model.cuda()

    logger.info("creating model '{}'".format(cfgs.net.arch))

    model = DDP(model, device_ids=[args.local_rank])
    logger.info("model\n{}".format(model))

    if cfgs.get('label_smooth', None):
        criterion = LabelSmoothLoss(cfgs.trainer.label_smooth,
                                    cfgs.net.kwargs.num_classes).cuda()
    else:
        criterion = nn.CrossEntropyLoss().cuda()
    logger.info("loss\n{}".format(criterion))

    optimizer = torch.optim.SGD(model.parameters(),
                                **cfgs.trainer.optimizer.kwargs)
    logger.info("optimizer\n{}".format(optimizer))

    cudnn.benchmark = True

    args.start_epoch = -cfgs.trainer.lr_scheduler.get('warmup_epochs', 0)
    args.max_epoch = cfgs.trainer.max_epoch
    args.test_freq = cfgs.trainer.test_freq
    args.log_freq = cfgs.trainer.log_freq

    best_acc1 = 0.0
    if cfgs.saver.resume_model:
        assert os.path.isfile(
            cfgs.saver.resume_model), 'Not found resume model: {}'.format(
                cfgs.saver.resume_model)
        checkpoint = torch.load(cfgs.saver.resume_model)
        check_keys(model=model, checkpoint=checkpoint)
        model.load_state_dict(checkpoint['state_dict'])
        args.start_epoch = checkpoint['epoch']
        best_acc1 = checkpoint['best_acc1']
        optimizer.load_state_dict(checkpoint['optimizer'])
        logger.info("resume training from '{}' at epoch {}".format(
            cfgs.saver.resume_model, checkpoint['epoch']))
    elif cfgs.saver.pretrain_model:
        assert os.path.isfile(
            cfgs.saver.pretrain_model), 'Not found pretrain model: {}'.format(
                cfgs.saver.pretrain_model)
        checkpoint = torch.load(cfgs.saver.pretrain_model)
        check_keys(model=model, checkpoint=checkpoint)
        model.load_state_dict(checkpoint['state_dict'])
        logger.info("pretrain training from '{}'".format(
            cfgs.saver.pretrain_model))

    if args.local_rank == 0 and cfgs.saver.get('save_dir', None):
        if not os.path.exists(cfgs.saver.save_dir):
            os.makedirs(cfgs.saver.save_dir)
            logger.info("create checkpoint folder {}".format(
                cfgs.saver.save_dir))

    # Data loading code
    train_loader, train_sampler, test_loader, _ = build_dataloader(
        cfgs.dataset, args.world_size)

    # test mode
    if args.test:
        test(test_loader, model, criterion, args)
        return

    # choose scheduler
    lr_scheduler = torch.optim.lr_scheduler.__dict__[
        cfgs.trainer.lr_scheduler.type](optimizer if isinstance(
            optimizer, torch.optim.Optimizer) else optimizer.optimizer,
                                        **cfgs.trainer.lr_scheduler.kwargs,
                                        last_epoch=args.start_epoch - 1)

    monitor_writer = None
    if args.local_rank == 0 and cfgs.get('monitor', None):
        if cfgs.monitor.get('type', None) == 'pavi':
            from pavi import SummaryWriter
            if cfgs.monitor.get("_taskid", None):
                monitor_writer = SummaryWriter(session_text=yaml.dump(
                    args.config),
                                               **cfgs.monitor.kwargs,
                                               taskid=cfgs.monitor._taskid)
            else:
                monitor_writer = SummaryWriter(session_text=yaml.dump(
                    args.config),
                                               **cfgs.monitor.kwargs)

    # training
    # args.max_epoch=1
    for epoch in range(args.start_epoch, args.max_epoch):
        train_sampler.set_epoch(epoch)

        # train for one epoch
        train(train_loader, model, criterion, optimizer, epoch, args,
              monitor_writer)

        if (epoch + 1) % args.test_freq == 0 or epoch + 1 == args.max_epoch:
            # evaluate on validation set
            loss, acc1, acc5 = test(test_loader, model, criterion, args)

            if args.local_rank == 0:
                if monitor_writer:
                    monitor_writer.add_scalar('Accuracy_Test_top1', acc1,
                                              len(train_loader) * epoch)
                    monitor_writer.add_scalar('Accuracy_Test_top5', acc5,
                                              len(train_loader) * epoch)
                    monitor_writer.add_scalar('Test_loss', loss,
                                              len(train_loader) * epoch)

                checkpoint = {
                    'epoch': epoch + 1,
                    'arch': cfgs.net.arch,
                    'state_dict': model.state_dict(),
                    'best_acc1': best_acc1,
                    'optimizer': optimizer.state_dict()
                }

                ckpt_path = os.path.join(
                    cfgs.saver.save_dir,
                    cfgs.net.arch + '_ckpt_epoch_{}.pth'.format(epoch))
                best_ckpt_path = os.path.join(cfgs.saver.save_dir,
                                              cfgs.net.arch + '_best.pth')
                torch.save(checkpoint, ckpt_path)
                if acc1 > best_acc1:
                    best_acc1 = acc1
                    shutil.copyfile(ckpt_path, best_ckpt_path)

        lr_scheduler.step()

    # finished
    results = {}
    if os.path.exists(args.output):
        with open(args.output, 'r') as f:
            try:
                results = json.load(f)
            except:
                pass

    if results.get('inceptionv3', None) is None:
        results['inceptionv3'] = {}
    results['inceptionv3']['accu'] = {'accuracy_top-1': best_acc1}

    with open(args.output, 'w') as f:
        json.dump(results, f)


def train(train_loader, model, criterion, optimizer, epoch, args,
          monitor_writer):
    batch_time = AverageMeter('Time', ':.3f', 200)
    data_time = AverageMeter('Data', ':.3f', 200)

    losses = AverageMeter('Loss', ':.4f', 50)
    top1 = AverageMeter('Acc@1', ':.2f', 50)
    top5 = AverageMeter('Acc@5', ':.2f', 50)

    memory = AverageMeter('Memory(MB)', ':.0f')
    progress = ProgressMeter(len(train_loader),
                             batch_time,
                             data_time,
                             losses,
                             top1,
                             top5,
                             memory,
                             prefix="Epoch: [{}/{}]".format(
                                 epoch + 1, args.max_epoch))

    # switch to train mode
    model.train()
    end = time.time()
    for i, (input, target) in enumerate(train_loader):
        # measure data loading time
        data_time.update(time.time() - end)

        input = input.cuda()
        target = target.cuda()

        # compute output
        output = model(input)
        loss = criterion(output, target)

        # measure accuracy and record loss
        acc1, acc5 = accuracy(output, target, topk=(1, 5))

        stats_all = torch.tensor([loss.item(), acc1[0].item(),
                                  acc5[0].item()]).float().cuda()
        dist.all_reduce(stats_all)
        stats_all /= args.world_size

        losses.update(stats_all[0].item())
        top1.update(stats_all[1].item())
        top5.update(stats_all[2].item())
        memory.update(torch.cuda.max_memory_allocated() / 1024 / 1024)

        # compute gradient and do SGD step
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        if i % args.log_freq == 0:
            progress.display(i)
            if args.local_rank == 0 and monitor_writer:
                cur_iter = epoch * len(train_loader) + i
                monitor_writer.add_scalar('Train_Loss', losses.avg, cur_iter)
                monitor_writer.add_scalar('Accuracy_train_top1', top1.avg,
                                          cur_iter)
                monitor_writer.add_scalar('Accuracy_train_top5', top5.avg,
                                          cur_iter)


def test(test_loader, model, criterion, args):
    batch_time = AverageMeter('Time', ':.3f', 10)
    losses = AverageMeter('Loss', ':.4f', -1)
    top1 = AverageMeter('Acc@1', ':.2f', -1)
    top5 = AverageMeter('Acc@5', ':.2f', -1)
    stats_all = torch.Tensor([0, 0, 0]).long()
    progress = ProgressMeter(len(test_loader),
                             batch_time,
                             losses,
                             top1,
                             top5,
                             prefix="Test: ")

    # switch to evaluate mode
    model.eval()
    with torch.no_grad():
        end = time.time()
        for i, (input, target) in enumerate(test_loader):
            input = input.cuda()
            target = target.cuda()

            # compute output
            output = model(input)
            loss = criterion(output, target)

            # measure accuracy and record loss
            acc1, acc5 = accuracy(output, target, topk=(1, 5), raw=True)

            losses.update(loss.item())
            top1.update(acc1[0].item() * 100.0 / target.size(0))
            top5.update(acc5[0].item() * 100.0 / target.size(0))

            stats_all.add_(
                torch.tensor([acc1[0].item(), acc5[0].item(),
                              target.size(0)]).long())

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()

            if i % args.log_freq == 0:
                progress.display(i)

        logger_all.info(
            ' Rank {} Loss {:.4f} Acc@1 {} Acc@5 {} total_size {}'.format(
                args.local_rank, losses.avg, stats_all[0].item(),
                stats_all[1].item(), stats_all[2].item()))

        loss = torch.tensor([losses.avg])
        dist.all_reduce(loss.cuda())
        loss_avg = loss.item() / args.world_size
        dist.all_reduce(stats_all.cuda())
        acc1 = stats_all[0].item() * 100.0 / stats_all[2].item()
        acc5 = stats_all[1].item() * 100.0 / stats_all[2].item()

        logger.info(
            ' * All Loss {:.4f} Acc@1 {:.3f} ({}/{}) Acc@5 {:.3f} ({}/{})'.
            format(loss_avg, acc1, stats_all[0].item(), stats_all[2].item(),
                   acc5, stats_all[1].item(), stats_all[2].item()))

    return loss_avg, acc1, acc5


if __name__ == '__main__':
    main()