utils.py 24.1 KB
Newer Older
dengjb's avatar
dengjb committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
#pt加载功能基于群内@作者版本修改 
import os 
import time
from contextlib import nullcontext, contextmanager
from IPython.display import clear_output, display
from pathlib import Path
from PIL import Image
from .png_info_helper import serialize_to_text, serialize_to_pnginfo
import paddle

_VAE_SIZE_THRESHOLD_ = 300000000       # vae should not be smaller than this
_MODEL_SIZE_THRESHOLD_ = 3000000000    # model should not be smaller than this

def compute_gpu_memory():
    import pynvml
    pynvml.nvmlInit()
    handle = pynvml.nvmlDeviceGetHandleByIndex(0)
    meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
    return round(meminfo.total / 1024 / 1024 / 1024, 2)

def empty_cache():
    """Empty CUDA cache. Essential in stable diffusion pipeline."""
    import gc
    gc.collect()

def check_is_model_complete(path = None, check_vae_size=_VAE_SIZE_THRESHOLD_):
    """Auto check whether a model is complete by checking the size of vae > check_vae_size.
    The vae of the model should be named by model_state.pdparams."""
    path = path or os.path.join('./',os.path.basename(model_get_default())).rstrip('.zip')
    return os.path.exists(os.path.join(path,'vae/model_state.pdparams')) and\
         os.path.getsize(os.path.join(path,'vae/model_state.pdparams')) > check_vae_size

def model_get_default(base_path = '/home/aistudio/data'):
    """Return an absolute path of model zip file in the `base_path`."""
    available_models = []
    for folder in os.walk(base_path):
        for filename_ in folder[2]:
            filename = os.path.join(folder[0], filename_)
            if filename.endswith('.zip') and os.path.isfile(filename) and os.path.getsize(filename) > _MODEL_SIZE_THRESHOLD_:
                available_models.append((os.path.getsize(filename), filename, filename_))
    available_models.sort()
    # use the model with smallest size to save computation
    return available_models[0][1]

def model_vae_get_default(base_path = 'data'):
    """Return an absolute path of extra vae if there is any."""
    for folder in os.walk(base_path):
        for filename_ in folder[2]:
            filename = os.path.join(folder[0], filename_)
            if filename.endswith('vae.pdparams'):
                return filename
    return None

def model_unzip(abs_path = None, name = None, dest_path = './', verbose = True):
    """Unzip a model from `abs_path`, `name` is the model name after unzipping."""
    if abs_path is None:
        abs_path = model_get_default()
    if name is None:
        name = os.path.basename(abs_path)

    from zipfile import ZipFile
    dest = os.path.join(dest_path, name).rstrip('.zip')
    if not check_is_model_complete(dest):
        if os.path.exists(dest):
            # clear the incomplete zipfile
            if verbose: print('检测到模型文件破损, 正在删除......')
            import shutil
            shutil.rmtree(dest)
        
        if verbose: print('正在解压模型......')
        with ZipFile(abs_path, 'r') as f:
            f.extractall(dest_path)
    else:
        print('模型已存在')

def package_install(verbose = True):
    try:
        import safetensors
        from ppdiffusers.utils import image_grid
        from paddlenlp.transformers.clip.feature_extraction import CLIPFeatureExtractor
        from paddlenlp.transformers import FeatureExtractionMixin
        
    except (ModuleNotFoundError, ImportError, AttributeError):
        if verbose: print('检测到库不完整, 正在安装库')
        os.system("pip install -U pip  -i https://mirror.baidu.com/pypi/simple")
        os.system("pip install -U OmegaConf --user")
        os.system("pip install ppdiffusers==0.9.0 --user")
        os.system("pip install paddlenlp==2.4.9 --user")
        os.system("pip install -U safetensors --user")
        clear_output()

def diffusers_auto_update(verbose = True):
    package_install(verbose=verbose)

def try_get_catched_model(model_name):
    path = os.path.join('./models/', model_name)
    if check_is_model_complete(path):
        return path
    path = os.path.join('./', model_name)
    if check_is_model_complete(path):
        return path
    return model_name
    
@contextmanager
def context_nologging():
    import logging
    logging.disable(100)
    try:
        yield
    finally:
        logging.disable(30)
 
def save_image_info(image, path = './outputs/', existing_info = None):
    """Save image to a path with arguments."""
    os.makedirs(path, exist_ok=True)
    seed = image.argument['seed']
    filename = time.strftime(f'%Y-%m-%d_%H-%M-%S_SEED_{seed}')
    
    pnginfo_data = serialize_to_pnginfo(image.argument, existing_info)
    info_text = serialize_to_text(image.argument)
    
    with open(os.path.join(path, filename + '.txt'), 'w') as f:
        f.write('Prompt: '+ info_text)
    image_path = os.path.join(path, filename + '.png')
    image.save(image_path, 
        quality=100,
        pnginfo=pnginfo_data
    )
    return image_path
    
def ReadImage(image, height = None, width = None):
    """
    Read an image and resize it to (height,width) if given.
    If (height,width) = (-1,-1), resize it so that 
    it has w,h being multiples of 64 and in medium size.
    """
    if isinstance(image, str):
        image = Image.open(image).convert('RGB')

    # clever auto inference of image size
    w, h = image.size
    if height == -1 or width == -1:
        if w > h:
            width = 768
            height = max(64, round(width / w * h / 64) * 64)
        else: # w < h
            height = 768
            width = max(64, round(height / h * w / 64) * 64)
        if width > 576 and height > 576:
            width = 576
            height = 576
    if (height is not None) and (width is not None) and (w != width or h != height):
        image = image.resize((width, height), Image.ANTIALIAS)
    return image
    
def convert_pt_to_pdparams(path, dim = 768, save = True):
    """Unsafe .pt embedding to .pdparams."""
    path = str(path)
    assert path.endswith('.pt'), 'Only support conversion of .pt files.'

    import struct
    with open(path, 'rb') as f:
        data = f.read()
    data = ''.join(chr(i) for i in data)

    # locate the tensor in the file
    tensors = []
    for chunk in data.split('ZZZZ'):
        chunk = chunk.strip('Z').split('PK')
        if len(chunk) == 0:
            continue

        tensor = ''
        for i in range(len(chunk)):
            # extract the string with length 768 * (4k)
            tensor += 'PK' + chunk[i]
            if len(tensor) > 2 and len(tensor) % (dim * 4) == 2:
                # remove the leading 'PK'
                tensors.append(tensor[2:])

    tensor = max(tensors, key = lambda x: len(x))

    # convert back to binary representation
    tensor = tensor.encode('latin')

    # every four chars represent a float32
    tensor = [struct.unpack('f', tensor[i:i+4])[0] for i in range(0, len(tensor), 4)]
    tensor = paddle.to_tensor(tensor).reshape((-1, dim))
    if tensor.shape[0] == 1:
        tensor = tensor.flatten()

    if save:
        # locate the name of embedding
        name = ''.join(filter(lambda x: ord(x) > 20, data.split('nameq\x12X')[1].split('q\x13X')[0]))
        paddle.save({name: tensor}, path[:-3] + '.pdparams')

    return tensor

def get_multiple_tokens(token, num = 1, ret_list = True):
    """Parse a single token to multiple tokens."""
    tokens = ['%s_EMB_TOKEN_%d'%(token, i) for i in range(num)]
    if ret_list:
        return tokens
    return ' '.join(tokens)


def collect_local_module_names(base_paths = None):
    """从指定位置检索可用的模型名称,以用于UI选择模型"""
    base_paths = (
            './', 
            './models', 
            os.path.join(os.environ['PPNLP_HOME'], 'models')
        ) if base_paths is None \
        else (base_paths,) if isinstance(base_paths, str) \
        else base_paths
    
    is_model = lambda base, name: (os.path.isfile(
            os.path.join(base, name,'model_index.json')
        )) and (os.path.isfile(
            os.path.join(base, name,'vae', 'config.json')
        )) and (os.path.isfile(
            os.path.join(base, name,'unet', 'model_state.pdparams')
        ))
        
    models = []
    for base_path in base_paths:
        if not os.path.isdir(base_path): continue
        for name in os.listdir(base_path):
            if name.startswith('.'): continue
            
            path = os.path.join(base_path, name)
            
            if path in base_paths: continue
            if not os.path.isdir(path): continue
            
            if is_model(base_path, name):
                models.append(name)
                continue
            
            for name2 in os.listdir(path):
                if name.startswith('.'): continue
                path2 = os.path.join(path, name2)
                if os.path.isdir(path2) and is_model(path, name2):
                    models.append(f'{name}/{name2}')
                    continue
    
    sorted(models)
    return models

    
class StableDiffusionFriendlyPipeline():
    def __init__(self, model_name = "runwayml/stable-diffusion-v1-5", superres_pipeline = None):
        self.pipe = None

        # model
        self.model = model_name
        # vae
        self.vae = None

        # schedulers
        self.available_schedulers = {}

        # super-resolution
        self.superres_pipeline = superres_pipeline

        self.added_tokens = []
                
    def from_pretrained(self, verbose = True, force = False, model_name=None):
        if model_name is not None:
            if len(model_name.strip()) == 0:
                print("!!!!!检测出模型名称为空,我们将默认使用 MoososCap/NOVEL-MODEL")
                model_name = "MoososCap/NOVEL-MODEL"
            if model_name != self.model.strip():
                print(f"!!!!!正在切换新模型, {model_name}")
                self.model = model_name.strip()
                force=True

        model = self.model

        if (not force) and self.pipe is not None:
            return

        if verbose: print('!!!!!正在加载模型, 请耐心等待, 如果出现两行红字是正常的, 不要惊慌!!!!!')
        _ = paddle.zeros((1,)) # activate the paddle on CUDA

        with context_nologging():
            from .pipeline_stable_diffusion_all_in_one import StableDiffusionPipelineAllinOne
            self.pipe = StableDiffusionPipelineAllinOne.from_pretrained(model, safety_checker = None, requires_safety_checker=False)

        # update scheduler
        scheduler = self.pipe.scheduler
        if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
            new_config = dict(scheduler.config)
            new_config["steps_offset"] = 1
            from ppdiffusers.configuration_utils import FrozenDict
            scheduler._internal_dict = FrozenDict(new_config)
            self.pipe.register_modules(scheduler=scheduler)
        self.available_schedulers = {}
        self.available_schedulers['default'] = scheduler
        # schedulers
        from ppdiffusers import KDPM2AncestralDiscreteScheduler, KDPM2DiscreteScheduler, PNDMScheduler, DDIMScheduler, LMSDiscreteScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, DPMSolverMultistepScheduler, HeunDiscreteScheduler
        self.available_schedulers.update({
            "DPMSolver": DPMSolverMultistepScheduler.from_pretrained(
                model_name,
                subfolder="scheduler",
                thresholding=False,
                algorithm_type="dpmsolver++",
                solver_type="midpoint",
                lower_order_final=True,
            ),
            "EulerDiscrete": EulerDiscreteScheduler.from_config(model_name, subfolder="scheduler"), 
            'EulerAncestralDiscrete': EulerAncestralDiscreteScheduler.from_pretrained(model_name, subfolder="scheduler"), 
            'PNDM': PNDMScheduler.from_pretrained(model_name, subfolder="scheduler"), 
            'DDIM': DDIMScheduler.from_pretrained(model_name, subfolder="scheduler", clip_sample=False), 
            'LMSDiscrete' : LMSDiscreteScheduler.from_pretrained(model_name, subfolder="scheduler"), 
            'HeunDiscrete': HeunDiscreteScheduler.from_pretrained(model_name, subfolder="scheduler"), 
            'KDPM2AncestralDiscrete': KDPM2AncestralDiscreteScheduler.from_pretrained(model_name, subfolder="scheduler"), 
            'KDPM2Discrete': KDPM2DiscreteScheduler.from_pretrained(model_name, subfolder="scheduler"), 
        })

        if verbose: print('成功加载完毕, 若默认设置无法生成, 请停止项目等待保存完毕选择GPU重新进入')

    def load_concepts(self, opt):
        added_tokens = []
        is_exist_concepts_library_dir = False
        original_dtype = None
        has_updated = False

        if opt.concepts_library_dir is not None:
            file_paths = None

            path = Path(opt.concepts_library_dir)
            if path.exists():
                #file_paths = path.glob("*.pdparams")
                file_paths = [p for p in path.glob("*.pdparams")]

                # conversion of .pt -> .pdparams embedding
                pt_files = path.glob("*.pt")
                for pt_file in pt_files:
                    try:
                        convert_pt_to_pdparams(pt_file, dim = 768, save = True)
                    except:
                        pass
            
            if opt.concepts_library_dir.endswith('.pdparams') and os.path.exists(opt.concepts_library_dir): 
                # load single file
                file_paths = [opt.concepts_library_dir]                

            if file_paths is not None and len(file_paths)>0:
                is_exist_concepts_library_dir = True
                
                # load the token safely in float32
                original_dtype = self.pipe.text_encoder.dtype
                self.pipe.text_encoder = self.pipe.text_encoder.to(dtype = 'float32')
                self.added_tokens = []
                for p in file_paths:
                    for token, embeds in paddle.load(str(p)).items():
                        added_tokens.append(token)
                        if embeds.dim() == 1:
                            embeds = embeds.reshape((1, -1))
                        tokens = get_multiple_tokens(token, embeds.shape[0], ret_list = True)
                        self.added_tokens.append((token, ' '.join(tokens)))

                        for token, embed in zip(tokens, embeds):
                            self.pipe.tokenizer.add_tokens(token)
                            self.pipe.text_encoder.resize_token_embeddings(len(self.pipe.tokenizer))
                            token_id = self.pipe.tokenizer.convert_tokens_to_ids(token)
                            with paddle.no_grad():
                                if paddle.max(paddle.abs(self.pipe.text_encoder.get_input_embeddings().weight[token_id] - embed)) > 1e-4:
                                    # only add / update new token if it has changed
                                    has_updated = True
                                    self.pipe.text_encoder.get_input_embeddings().weight[token_id] = embed
                            

        if is_exist_concepts_library_dir:
            if has_updated and len(added_tokens):
                str_added_tokens = ", ".join(added_tokens)
                print(f"[导入训练文件] 成功加载了这些新词: {str_added_tokens} ")
        else:
            print(f"[导入训练文件] {opt.concepts_library_dir} 文件夹下没有发现任何文件,跳过加载!")
        
        if self.added_tokens:
            #self_str_added_tokens = ", ".join((self.added_tokens))
            str_added_tokens = ", ".join(added_tokens)
            print(f"[支持的'风格'或'人物'单词]: {str_added_tokens} ")
        if original_dtype is not None:
            self.pipe.text_encoder = self.pipe.text_encoder.to(dtype = original_dtype)
    
    def run(self, opt, task = 'txt2img', on_image_generated = None):
        model_name = try_get_catched_model(opt.model_name)
        self.from_pretrained(model_name=model_name)
        self.load_concepts(opt)

        seed = None if opt.seed == -1 else opt.seed

        # switch scheduler
        self.pipe.scheduler = self.available_schedulers[opt.sampler]
        task_func = None

        # process prompts
        enable_parsing = False
        prompt = opt.prompt
        negative_prompt = opt.negative_prompt
        if '{}' in opt.enable_parsing:
            enable_parsing = True
            # convert {} to ()
            prompt = prompt.translate({40:123, 41:125, 123:40, 125:41})
            negative_prompt = negative_prompt.translate({40:123, 41:125, 123:40, 125:41})
        elif '()' in opt.enable_parsing:
            enable_parsing = True
        for token in self.added_tokens:
            prompt = prompt.replace(token[0], token[1])
            negative_prompt = negative_prompt.replace(token[0], token[1])
        
        
        init_image = None
        mask_image = None
        if task == 'txt2img':
            def task_func():
                return self.pipe.text2image(
                                    prompt, seed=seed, 
                                    width=opt.width, 
                                    height=opt.height, 
                                    guidance_scale=opt.guidance_scale, 
                                    num_inference_steps=opt.num_inference_steps, 
                                    negative_prompt=negative_prompt,
                                    max_embeddings_multiples=int(opt.max_embeddings_multiples),
                                    skip_parsing=(not enable_parsing)
                                ).images[0]
        elif task == 'img2img':
            init_image = ReadImage(opt.image_path, height=opt.height, width=opt.width)
            def task_func():
                return self.pipe.img2img(
                                    prompt, seed=seed, 
                                    image=init_image, 
                                    num_inference_steps=opt.num_inference_steps, 
                                    strength=opt.strength, 
                                    guidance_scale=opt.guidance_scale, 
                                    negative_prompt=negative_prompt,
                                    max_embeddings_multiples=int(opt.max_embeddings_multiples),
                                    skip_parsing=(not enable_parsing)
                                )[0][0]
        elif task == 'inpaint':
            init_image = ReadImage(opt.image_path, height=opt.height, width=opt.width)
            mask_image = ReadImage(opt.mask_path, height=opt.height, width=opt.width)
            def task_func():
                return self.pipe.inpaint(
                                    prompt, seed=seed, 
                                    image=init_image, 
                                    mask_image=mask_image, 
                                    num_inference_steps=opt.num_inference_steps, 
                                    strength=opt.strength, 
                                    guidance_scale=opt.guidance_scale, 
                                    negative_prompt=negative_prompt,
                                    max_embeddings_multiples=int(opt.max_embeddings_multiples),
                                    skip_parsing=(not enable_parsing)
                                )[0][0]
            
        if opt.fp16 == 'float16' and opt.sampler != "LMSDiscrete":
            context = paddle.amp.auto_cast(True, level = 'O2') # level = 'O2' # seems to have BUG if enable O2
        else:
            context = nullcontext()

        image_info = init_image.info if init_image is not None else None
        with context:
            for i in range(opt.num_return_images):
                empty_cache()
                image = task_func()
                image.argument['sampler'] = opt.sampler
                
                # super resolution
                if (self.superres_pipeline is not None):
                    argument = image.argument
                    argument['superres_model_name'] = opt.superres_model_name
                    
                    image = self.superres_pipeline.run(opt, image = image, end_to_end = False)
                    image.argument = argument

                if task == 'img2img':
                    image.argument['init_image'] = opt.image_path
                elif task == 'inpaint':
                    image.argument['init_image'] = opt.image_path
                    image.argument['mask_path'] = opt.mask_path
                        

                image.argument['model_name'] = opt.model_name
                
                if on_image_generated is not None:
                    on_image_generated(
                        image = image,
                        options = opt,
                        count = i,
                        total = opt.num_return_images,
                        image_info = image_info,
                    )
                    continue
                
                save_image_info(image, opt.output_dir,image_info)
                
                if i % 50 == 0:
                    clear_output()
                
                display(image)
                
                print('Seed = ', image.argument['seed'], 
                    '    (%d / %d ... %.2f%%)'%(i + 1, opt.num_return_images, (i + 1.) / opt.num_return_images * 100))

class SuperResolutionPipeline():
    def __init__(self):
        self.model = None
        self.model_name = ''
    
    def run(self, opt, 
                image = None, 
                task = 'superres', 
                end_to_end = True,
                force_empty_cache = True,
                on_image_generated = None,
            ):
        """
        end_to_end: return PIL image if False, display in the notebook and autosave otherwise
        empty_cache: force clear the GPU cache by deleting the model
        """
        if opt.superres_model_name is None or opt.superres_model_name in ('','无'):
            return image

        import numpy as np
        if image is None:
            image = ReadImage(opt.image_path, height=None, width=None) # avoid resizing
        image_info = image.info
        
        image = np.array(image)
        image = image[:,:,[2,1,0]]  # RGB -> BGR

        empty_cache()
        if self.model_name != opt.superres_model_name:
            if self.model is not None:
                del self.model 

            with context_nologging():
                # [ WARNING] - The _initialize method in HubModule will soon be deprecated, you can use the __init__() to handle the initialization of the object
                import paddlehub as hub
                # print('正在加载超分模型! 如果出现两三行红字是正常的, 不要担心哦!')
                self.model = hub.Module(name = opt.superres_model_name)
            
        self.model_name = opt.superres_model_name

        # time.sleep(.1) # wait until the warning prints
        # print('正在超分......请耐心等待')
    
        try:
            image = self.model.reconstruct([image], use_gpu = (paddle.device.get_device() != 'cpu'))[0]['data']
        except:
            print('图片尺寸过大, 超分时超过显存限制')
            self.empty_cache(force_empty_cache)
            paddle.disable_static()
            return

        image = image[:,:,[2,1,0]] # BGR -> RGB
        image = Image.fromarray(image)
        
        self.empty_cache(force_empty_cache)
        paddle.disable_static()
        
        if on_image_generated is not None:
            on_image_generated(
                image = image,
                options = opt,
                count = 0,
                total = 1,
                image_info = image_info,
            )
            return
        if end_to_end:
            cur_time = time.time()
            os.makedirs(opt.output_dir, exist_ok = True)
            image.save(os.path.join(opt.output_dir,f'Highres_{cur_time}.png'), quality=100)
            clear_output()
            display(image)
            return
        return image
    
    def empty_cache(self, force = True):
        # NOTE: it seems that ordinary method cannot clear the cache
        # so we have to delete the model (?)
        if not force:
            return
        del self.model
        self.model = None
        self.model_name = ''