dreambooth.py 25.6 KB
Newer Older
dengjb's avatar
dengjb committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#Modified By He
import argparse
import contextlib
import hashlib
import itertools
import math
import os
import sys
from pathlib import Path

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.distributed.fleet.utils.hybrid_parallel_util import (
    fused_allreduce_gradients,
)
from paddle.io import BatchSampler, DataLoader, Dataset, DistributedBatchSampler
from paddle.optimizer import AdamW
from paddle.vision import transforms
from PIL import Image
from tqdm.auto import tqdm

from paddlenlp.trainer import set_seed
from paddlenlp.transformers import AutoTokenizer, BertModel, CLIPTextModel
from paddlenlp.utils.log import logger
from ppdiffusers import (
    AutoencoderKL,
    DDPMScheduler,
    StableDiffusionPipeline,
    UNet2DConditionModel,
)
from ppdiffusers.modeling_utils import freeze_params, unwrap_model
from ppdiffusers.optimization import get_scheduler


#def parse_args(input_args=None):
def parse_args():
    parser = argparse.ArgumentParser(description="Simple example of a training dreambooth script.")
    parser.add_argument(
        "--save_steps",
        type=int,
        default=500,
        help="Save pipe every X updates steps.",
    )
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default="CompVis/stable-diffusion-v1-4",
        #required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--tokenizer_name",
        type=str,
        default=None,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--instance_data_dir",
        type=str,
        default=None,
        #required=True,
        help="A folder containing the training data of instance images.",
    )
    parser.add_argument(
        "--class_data_dir",
        type=str,
        default=None,
        required=False,
        help="A folder containing the training data of class images.",
    )
    parser.add_argument(
        "--instance_prompt",
        type=str,
        default=None,
        help="The prompt with identifier specifying the instance",
    )
    parser.add_argument(
        "--class_prompt",
        type=str,
        default=None,
        help="The prompt to specify images in the same class as provided instance images.",
    )
    parser.add_argument(
        "--with_prior_preservation",
        default=False,
        action="store_true",
        help="Flag to add prior preservation loss.",
    )
    parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
    parser.add_argument(
        "--num_class_images",
        type=int,
        default=100,
        help=(
            "Minimal class images for prior preservation loss. If not have enough images, additional images will be"
            " sampled with class_prompt."
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="./dreambooth-model",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
    parser.add_argument(
        "--height",
        type=int,
        default=512,
        help=(
            "The height for input images, all the images in the train/validation dataset will be resized to this"
            " height"
        ),
    )
    parser.add_argument(
        "--width",
        type=int,
        default=512,
        help=(
            "The width for input images, all the images in the train/validation dataset will be resized to this"
            " width"
        ),
    )
    parser.add_argument(
        "--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution"
    )
    parser.add_argument("--train_text_encoder", action="store_true", help="Whether to train the text encoder")
    parser.add_argument(
        "--train_batch_size", type=int, default=1, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument(
        "--sample_batch_size", type=int, default=1, help="Batch size (per device) for sampling images."
    )
    parser.add_argument("--num_train_epochs", type=int, default=1)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=5e-6,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
        default=False,
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
    parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")

    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) or [VisualDL](https://www.paddlepaddle.org.cn/paddle/visualdl) log directory. Will default to"
            "*output_dir/logs"
        ),
    )
    parser.add_argument(
        "--writer_type", type=str, default="visualdl", choices=["tensorboard", "visualdl"], help="Log writer type."
    )

    #if input_args is not None:
    #    args = parser.parse_args(input_args)
    #else:
    #args = parser.parse_args()
    #args = parser.parse_known_args()[0]
    args = parser.parse_args(args=[])
    #if args.instance_data_dir is None:
    #    raise ValueError("You must specify a train data directory.")
    #
    #if args.with_prior_preservation:
    #    if args.class_data_dir is None:
    #        raise ValueError("You must specify a data directory for class images.")
    #    if args.class_prompt is None:
    #        raise ValueError("You must specify prompt for class images.")
    #args.logging_dir = os.path.join(args.output_dir, args.logging_dir)

    return args


class DreamBoothDataset(Dataset):
    """
    A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
    It pre-processes the images and the tokenizes prompts.
    """

    def __init__(
        self,
        instance_data_root,
        instance_prompt,
        tokenizer,
        class_data_root=None,
        class_prompt=None,
        height=512,
        width=512,
        center_crop=False,
    ):
        self.height = height
        self.width = width
        self.center_crop = center_crop
        self.tokenizer = tokenizer

        self.instance_data_root = Path(instance_data_root)
        if not self.instance_data_root.exists():
            raise ValueError("Instance images root doesn't exists.")
        ext = ["png", "jpg", "jpeg", "bmp", "PNG", "JPG", "JPEG", "BMP"]
        self.instance_images_path = []
        for p in Path(instance_data_root).iterdir():
            if any(suffix in p.name for suffix in ext):
                self.instance_images_path.append(p)
        self.num_instance_images = len(self.instance_images_path)
        self.instance_prompt = instance_prompt
        self._length = self.num_instance_images

        if class_data_root is not None:
            self.class_data_root = Path(class_data_root)
            self.class_data_root.mkdir(parents=True, exist_ok=True)
            self.class_images_path = []
            for p in Path(class_data_root).iterdir():
                if any(suffix in p.name for suffix in ext):
                    self.class_images_path.append(p)
            self.num_class_images = len(self.class_images_path)
            self._length = max(self.num_class_images, self.num_instance_images)
            self.class_prompt = class_prompt
        else:
            self.class_data_root = None

        self.image_transforms = transforms.Compose(
            [
                transforms.Resize((height, width), interpolation="bilinear"),
                transforms.CenterCrop((height, width)) if center_crop else transforms.RandomCrop((height, width)),
                transforms.ToTensor(),
                transforms.Normalize([0.5], [0.5]),
            ]
        )

    def __len__(self):
        return self._length

    def __getitem__(self, index):
        example = {}
        instance_image = Image.open(self.instance_images_path[index % self.num_instance_images])
        if not instance_image.mode == "RGB":
            instance_image = instance_image.convert("RGB")
        example["instance_images"] = self.image_transforms(instance_image)
        example["instance_prompt_ids"] = self.tokenizer(
            self.instance_prompt,
            padding="do_not_pad",
            truncation=True,
            max_length=self.tokenizer.model_max_length,
        ).input_ids

        if self.class_data_root:
            class_image = Image.open(self.class_images_path[index % self.num_class_images])
            if not class_image.mode == "RGB":
                class_image = class_image.convert("RGB")
            example["class_images"] = self.image_transforms(class_image)
            example["class_prompt_ids"] = self.tokenizer(
                self.class_prompt,
                padding="do_not_pad",
                truncation=True,
                max_length=self.tokenizer.model_max_length,
            ).input_ids

        return example


class PromptDataset(Dataset):
    "A simple dataset to prepare the prompts to generate class images on multiple GPUs."

    def __init__(self, prompt, num_samples):
        self.prompt = prompt
        self.num_samples = num_samples

    def __len__(self):
        return self.num_samples

    def __getitem__(self, index):
        example = {}
        example["prompt"] = self.prompt
        example["index"] = index
        return example


def get_writer(args):
    if args.writer_type == "visualdl":
        from visualdl import LogWriter

        writer = LogWriter(logdir=args.logging_dir)
    elif args.writer_type == "tensorboard":
        from tensorboardX import SummaryWriter

        writer = SummaryWriter(logdir=args.logging_dir)
    else:
        raise ValueError("writer_type must be in ['visualdl', 'tensorboard']")
    return writer


def main(args):
    rank = paddle.distributed.get_rank()
    num_processes = paddle.distributed.get_world_size()
    if num_processes > 1:
        paddle.distributed.init_parallel_env()

    # If passed along, set the training seed now.
    if args.seed is not None:
        seed = args.seed + rank
        set_seed(seed)

    if args.with_prior_preservation:
        if rank == 0:
            class_images_dir = Path(args.class_data_dir)
            if not class_images_dir.exists():
                class_images_dir.mkdir(parents=True)
            cur_class_images = len(list(class_images_dir.iterdir()))

            if cur_class_images < args.num_class_images:
                pipeline = StableDiffusionPipeline.from_pretrained(
                    args.pretrained_model_name_or_path, safety_checker=None
                )
                pipeline.set_progress_bar_config(disable=True)

                num_new_images = args.num_class_images - cur_class_images
                logger.info(f"Number of class images to sample: {num_new_images}.")

                sample_dataset = PromptDataset(args.class_prompt, num_new_images)
                sample_dataloader = DataLoader(sample_dataset, batch_size=args.sample_batch_size)

                for example in tqdm(
                    sample_dataloader,
                    desc="Generating class images",
                ):
                    images = pipeline(example["prompt"]).images

                    for i, image in enumerate(images):
                        hash_image = hashlib.sha1(image.tobytes()).hexdigest()
                        image_filename = (
                            class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
                        )
                        image.save(image_filename)

                del pipeline
                # donot use paddle.device.cuda.empty_cache
                # if paddle.device.is_compiled_with_cuda():
                #     paddle.device.cuda.empty_cache()

    if args.output_dir is not None:
        os.makedirs(args.output_dir, exist_ok=True)

    # Load the tokenizer
    if args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name)
    elif args.pretrained_model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(os.path.join(args.pretrained_model_name_or_path, "tokenizer"))

    # Load models and create wrapper for stable diffusion
    if "Taiyi-Stable-Diffusion-1B-Chinese-v0.1" in args.pretrained_model_name_or_path:
        model_cls = BertModel
    else:
        model_cls = CLIPTextModel
    text_encoder = model_cls.from_pretrained(os.path.join(args.pretrained_model_name_or_path, "text_encoder"))
    vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae")
    freeze_params(vae.parameters())
    if not args.train_text_encoder:
        freeze_params(text_encoder.parameters())
    unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet")

    if args.gradient_checkpointing:
        unet.enable_gradient_checkpointing()

    if args.scale_lr:
        args.learning_rate = (
            args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * num_processes
        )

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        learning_rate=args.learning_rate,
        num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
        num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
    )
    if num_processes > 1:
        unet = paddle.DataParallel(unet)
        if args.train_text_encoder:
            text_encoder = paddle.DataParallel(text_encoder)

    params_to_optimize = (
        itertools.chain(unet.parameters(), text_encoder.parameters()) if args.train_text_encoder else unet.parameters()
    )

    optimizer = AdamW(
        learning_rate=lr_scheduler,
        parameters=params_to_optimize,
        beta1=args.adam_beta1,
        beta2=args.adam_beta2,
        weight_decay=args.adam_weight_decay,
        epsilon=args.adam_epsilon,
        grad_clip=nn.ClipGradByGlobalNorm(args.max_grad_norm) if args.max_grad_norm is not None else None,
    )

    noise_scheduler = DDPMScheduler(
        beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000
    )

    train_dataset = DreamBoothDataset(
        instance_data_root=args.instance_data_dir,
        instance_prompt=args.instance_prompt,
        class_data_root=args.class_data_dir if args.with_prior_preservation else None,
        class_prompt=args.class_prompt,
        tokenizer=tokenizer,
        height=args.height,
        width=args.width,
        center_crop=args.center_crop,
    )

    def collate_fn(examples):
        input_ids = [example["instance_prompt_ids"] for example in examples]
        pixel_values = [example["instance_images"] for example in examples]

        # Concat class and instance examples for prior preservation.
        # We do this to avoid doing two forward passes.
        if args.with_prior_preservation:
            input_ids += [example["class_prompt_ids"] for example in examples]
            pixel_values += [example["class_images"] for example in examples]

        pixel_values = paddle.stack(pixel_values).astype("float32")

        input_ids = tokenizer.pad(
            {"input_ids": input_ids}, padding="max_length", max_length=tokenizer.model_max_length, return_tensors="pd"
        ).input_ids

        batch = {
            "input_ids": input_ids,
            "pixel_values": pixel_values,
        }
        return batch

    train_sampler = (
        DistributedBatchSampler(train_dataset, batch_size=args.train_batch_size, shuffle=True)
        if num_processes > 1
        else BatchSampler(train_dataset, batch_size=args.train_batch_size, shuffle=True)
    )
    train_dataloader = DataLoader(train_dataset, batch_sampler=train_sampler, collate_fn=collate_fn, num_workers=1)

    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    if rank == 0:
        logger.info("-----------  Configuration Arguments -----------")
        for arg, value in sorted(vars(args).items()):
            logger.info("%s: %s" % (arg, value))
        logger.info("------------------------------------------------")
        writer = get_writer(args)

    # Train!
    total_batch_size = args.train_batch_size * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num batches each epoch = {len(train_dataloader)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    # Only show the progress bar once on each machine.
    progress_bar = tqdm(range(args.max_train_steps), disable=rank > 0)
    progress_bar.set_description("Train Steps")
    global_step = 0

    # Keep vae in eval model as we don't train these
    vae.eval()
    if args.train_text_encoder:
        text_encoder.train()
    else:
        text_encoder.eval()
    unet.train()

    for epoch in range(args.num_train_epochs):
        for step, batch in enumerate(train_dataloader):
            # Convert images to latent space
            latents = vae.encode(batch["pixel_values"]).latent_dist.sample()
            latents = latents * 0.18215

            # Sample noise that we'll add to the latents
            noise = paddle.randn(latents.shape)
            batch_size = latents.shape[0]
            # Sample a random timestep for each image
            timesteps = paddle.randint(0, noise_scheduler.config.num_train_timesteps, (batch_size,)).astype("int64")

            # Add noise to the latents according to the noise magnitude at each timestep
            # (this is the forward diffusion process)
            noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)

            if num_processes > 1 and (
                args.gradient_checkpointing or ((step + 1) % args.gradient_accumulation_steps != 0)
            ):
                # grad acc, no_sync when (step + 1) % args.gradient_accumulation_steps != 0:
                # gradient_checkpointing, no_sync every where
                # gradient_checkpointing + grad_acc, no_sync every where
                unet_ctx_manager = unet.no_sync()
                if args.train_text_encoder:
                    text_encoder_ctx_manager = text_encoder.no_sync()
                else:
                    text_encoder_ctx_manager = (
                        contextlib.nullcontext() if sys.version_info >= (3, 7) else contextlib.suppress()
                    )
            else:
                unet_ctx_manager = contextlib.nullcontext() if sys.version_info >= (3, 7) else contextlib.suppress()
                text_encoder_ctx_manager = (
                    contextlib.nullcontext() if sys.version_info >= (3, 7) else contextlib.suppress()
                )

            with text_encoder_ctx_manager:
                # Get the text embedding for conditioning
                attention_mask = paddle.ones_like(batch["input_ids"])
                encoder_hidden_states = text_encoder(batch["input_ids"], attention_mask=attention_mask)[0]

                with unet_ctx_manager:
                    # Predict the noise residual
                    noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample

                    if args.with_prior_preservation:
                        # Chunk the noise and noise_pred into two parts and compute the loss on each part separately.
                        noise_pred, noise_pred_prior = noise_pred.chunk(2, axis=0)
                        noise, noise_prior = noise.chunk(2, axis=0)

                        # Compute instance loss
                        loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean()

                        # Compute prior loss
                        prior_loss = F.mse_loss(noise_pred_prior, noise_prior, reduction="none").mean([1, 2, 3]).mean()

                        # Add the prior loss to the instance loss.
                        loss = loss + args.prior_loss_weight * prior_loss
                    else:
                        loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean()

                    if args.gradient_accumulation_steps > 1:
                        loss = loss / args.gradient_accumulation_steps
                    loss.backward()

            if (step + 1) % args.gradient_accumulation_steps == 0:
                if num_processes > 1 and args.gradient_checkpointing:
                    fused_allreduce_gradients(params_to_optimize, None)
                optimizer.step()
                lr_scheduler.step()
                optimizer.clear_grad()
                progress_bar.update(1)
                global_step += 1
                logs = {
                    "epoch": str(epoch).zfill(4),
                    "step_loss": round(loss.item() * args.gradient_accumulation_steps, 10),
                    "lr": lr_scheduler.get_lr(),
                }
                progress_bar.set_postfix(**logs)
                if rank == 0:
                    for name, val in logs.items():
                        if name == "epoch":
                            continue
                        writer.add_scalar(f"train/{name}", val, step=global_step)

                    if global_step % args.save_steps == 0:
                        # Create the pipeline using using the trained modules and save it.
                        pipeline = StableDiffusionPipeline.from_pretrained(
                            args.pretrained_model_name_or_path,
                            unet=unwrap_model(unet),
                            text_encoder=unwrap_model(text_encoder),
                            safety_checker=None,
                            tokenizer=tokenizer,
                        )
                        pipeline.save_pretrained(args.output_dir+str(global_step))

            if global_step >= args.max_train_steps:
                break

    if rank == 0:
        writer.close()
        # Create the pipeline using using the trained modules and save it.
        pipeline = StableDiffusionPipeline.from_pretrained(
            args.pretrained_model_name_or_path,
            unet=unwrap_model(unet),
            text_encoder=unwrap_model(text_encoder),
            safety_checker=None,
            tokenizer=tokenizer,
        )
        pipeline.save_pretrained(args.output_dir+str(global_step))
        print("训练完成了,请重启内核")


if __name__ == "__main__":
    args = parse_args()
    main(args)