train_t2v_enterance.py 12.1 KB
Newer Older
mashun1's avatar
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import os
import os.path as osp
import sys
sys.path.insert(0, '/'.join(osp.realpath(__file__).split('/')[:-4]))
import json
import math
import random
import torch
import logging
import datetime
import numpy as np
from PIL import Image
import torch.optim as optim 
from einops import rearrange
import torch.cuda.amp as amp
from importlib import reload
from copy import deepcopy, copy
import torch.nn.functional as F
import torch.distributed as dist
import torch.multiprocessing as mp
import torchvision.transforms as T
from torch.utils.data import DataLoader
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data.distributed import DistributedSampler

import utils.transforms as data
from utils.util import to_device
from ..modules.config import cfg
from utils.seed import setup_seed
from utils.optim import AnnealingLR
from utils.multi_port import find_free_port
from utils.distributed import generalized_all_gather, all_reduce
from utils.registry_class import ENGINE, MODEL, DATASETS, EMBEDDER, AUTO_ENCODER, DISTRIBUTION, VISUAL, DIFFUSION, PRETRAIN


@ENGINE.register_function()
def train_t2v_entrance(cfg_update,  **kwargs):
    for k, v in cfg_update.items():
        if isinstance(v, dict) and k in cfg:
            cfg[k].update(v)
        else:
            cfg[k] = v
    
    if not 'MASTER_ADDR' in os.environ:
        os.environ['MASTER_ADDR']='localhost'
        os.environ['MASTER_PORT']= find_free_port()
    cfg.pmi_rank = int(os.getenv('RANK', 0)) # 0
    cfg.pmi_world_size = int(os.getenv('WORLD_SIZE', 1))
    setup_seed(cfg.seed)

    if cfg.debug:
        cfg.gpus_per_machine = 1
        cfg.world_size = 1
    else:
        cfg.gpus_per_machine = torch.cuda.device_count()
        cfg.world_size = cfg.pmi_world_size * cfg.gpus_per_machine
    
    if cfg.world_size == 1:
        worker(0, cfg)
    else:
        mp.spawn(worker, nprocs=cfg.gpus_per_machine, args=(cfg, ))
    return cfg


def worker(gpu, cfg):
    '''
    Training worker for each gpu
    '''
    cfg.gpu = gpu
    cfg.rank = cfg.pmi_rank * cfg.gpus_per_machine + gpu
    
    if not cfg.debug:
        torch.cuda.set_device(gpu)
        torch.backends.cudnn.benchmark = True
        dist.init_process_group(backend='nccl', world_size=cfg.world_size, rank=cfg.rank)
    
    # [Log] Save logging
    log_dir = generalized_all_gather(cfg.log_dir)[0]
    exp_name = osp.basename(cfg.cfg_file).split('.')[0]
    cfg.log_dir = osp.join(cfg.log_dir, exp_name)
    os.makedirs(cfg.log_dir, exist_ok=True)
    if cfg.rank == 0:
        log_file = osp.join(cfg.log_dir, 'log.txt')
        cfg.log_file = log_file
        reload(logging)
        logging.basicConfig(
            level=logging.INFO,
            format='[%(asctime)s] %(levelname)s: %(message)s',
            handlers=[
                logging.FileHandler(filename=log_file),
                logging.StreamHandler(stream=sys.stdout)])
        logging.info(cfg)
        logging.info(f'Save all the file in to dir {cfg.log_dir}')
        logging.info(f"Going into i2v_img_fullid_vidcom function on {gpu} gpu")

    # [Diffusion]  build diffusion settings
    diffusion = DIFFUSION.build(cfg.Diffusion)

    # [Dataset] imagedataset and videodataset
    len_frames = len(cfg.frame_lens)
    len_fps = len(cfg.sample_fps)
    cfg.max_frames = cfg.frame_lens[cfg.rank % len_frames]
    cfg.batch_size = cfg.batch_sizes[str(cfg.max_frames)]
    cfg.sample_fps = cfg.sample_fps[cfg.rank % len_fps]
    
    if cfg.rank == 0:
        logging.info(f'Currnt worker with max_frames={cfg.max_frames}, batch_size={cfg.batch_size}, sample_fps={cfg.sample_fps}')

    train_trans = data.Compose([
        data.CenterCropWide(size=cfg.resolution),
        data.ToTensor(),
        data.Normalize(mean=cfg.mean, std=cfg.std)])
    vit_trans = data.Compose([
        data.CenterCropWide(size=(cfg.resolution[0], cfg.resolution[0])) if cfg.resolution[0]>cfg.vit_resolution[0] else data.CenterCropWide(size=cfg.vit_resolution),
        data.Resize(cfg.vit_resolution),
        data.ToTensor(),
        data.Normalize(mean=cfg.vit_mean, std=cfg.vit_std)])
    
    if cfg.max_frames == 1:
        cfg.sample_fps = 1
        dataset = DATASETS.build(cfg.img_dataset, transforms=train_trans, vit_transforms=vit_trans)
    else:
        dataset = DATASETS.build(cfg.vid_dataset, sample_fps=cfg.sample_fps, transforms=train_trans, vit_transforms=vit_trans, max_frames=cfg.max_frames)
    
    sampler = DistributedSampler(dataset, num_replicas=cfg.world_size, rank=cfg.rank) if (cfg.world_size > 1 and not cfg.debug) else None
    dataloader = DataLoader(
        dataset, 
        sampler=sampler,
        batch_size=cfg.batch_size,
        num_workers=cfg.num_workers,
        pin_memory=True,
        prefetch_factor=cfg.prefetch_factor)
    rank_iter = iter(dataloader) 
    
    # [Model] embedder
    clip_encoder = EMBEDDER.build(cfg.embedder)
    clip_encoder.model.to(gpu)
    _, _, zero_y = clip_encoder(text="")
    _, _, zero_y_negative = clip_encoder(text=cfg.negative_prompt)
    zero_y, zero_y_negative = zero_y.detach(), zero_y_negative.detach()

    # [Model] auotoencoder 
    autoencoder = AUTO_ENCODER.build(cfg.auto_encoder)
    autoencoder.eval() # freeze
    for param in autoencoder.parameters():
        param.requires_grad = False
    autoencoder.cuda()

    # [Model] UNet 
    model = MODEL.build(cfg.UNet, zero_y=zero_y_negative)
    model = model.to(gpu)

    resume_step = 1
    model, resume_step = PRETRAIN.build(cfg.Pretrain, model=model)
    torch.cuda.empty_cache()

    if cfg.use_ema:
        ema = model.module.state_dict() if hasattr(model, 'module') else model.state_dict()
        ema = type(ema)([(k, ema[k].data.clone()) for k in list(ema.keys())[cfg.rank::cfg.world_size]])
    
    # optimizer
    optimizer = optim.AdamW(params=model.parameters(),
            lr=cfg.lr, weight_decay=cfg.weight_decay)
    scaler = amp.GradScaler(enabled=cfg.use_fp16)
    if cfg.use_fsdp:
        config = {}
        config['compute_dtype'] = torch.float32
        config['mixed_precision'] = True
        model = FSDP(model, **config)
    else:
        model = DistributedDataParallel(model, device_ids=[gpu]) if not cfg.debug else model.to(gpu)

    # scheduler
    scheduler = AnnealingLR(
        optimizer=optimizer,
        base_lr=cfg.lr,
        warmup_steps=cfg.warmup_steps,  # 10
        total_steps=cfg.num_steps,      # 200000
        decay_mode=cfg.decay_mode)      # 'cosine'
    
    # [Visual]
    viz_num = min(cfg.batch_size, 8)
    visual_func = VISUAL.build(
        cfg.visual_train,
        cfg_global=cfg,
        viz_num=viz_num, 
        diffusion=diffusion, 
        autoencoder=autoencoder)
    
    for step in range(resume_step, cfg.num_steps + 1): 
        model.train()
        
        try:
            batch = next(rank_iter)
        except StopIteration:
            rank_iter = iter(dataloader)
            batch = next(rank_iter)
        
        batch = to_device(batch, gpu, non_blocking=True)
        ref_frame, _, video_data, captions, video_key = batch
        batch_size, frames_num, _, _, _ = video_data.shape
        video_data = rearrange(video_data, 'b f c h w -> (b f) c h w')

        fps_tensor =  torch.tensor([cfg.sample_fps] * batch_size, dtype=torch.long, device=gpu)
        video_data_list = torch.chunk(video_data, video_data.shape[0]//cfg.chunk_size,dim=0)
        with torch.no_grad():
            decode_data = []
            for chunk_data in video_data_list:
                latent_z = autoencoder.encode_firsr_stage(chunk_data, cfg.scale_factor).detach()
                decode_data.append(latent_z) # [B, 4, 32, 56]
            video_data = torch.cat(decode_data,dim=0)
            video_data = rearrange(video_data, '(b f) c h w -> b c f h w', b = batch_size) # [B, 4, 16, 32, 56]

        opti_timesteps = getattr(cfg, 'opti_timesteps', cfg.Diffusion.schedule_param.num_timesteps)
        t_round = torch.randint(0, opti_timesteps, (batch_size, ), dtype=torch.long, device=gpu) # 8

        # preprocess
        with torch.no_grad():
            _, _, y_words = clip_encoder(text=captions) # bs * 1 *1024 [B, 1, 1024]
            y_words_0 = y_words.clone()
            try:
                y_words[torch.rand(y_words.size(0)) < cfg.p_zero, :] = zero_y_negative
            except:
                pass
        
        # forward
        model_kwargs = {'y': y_words,  'fps': fps_tensor}
        if cfg.use_fsdp:
            loss = diffusion.loss(x0=video_data, 
                t=t_round, model=model, model_kwargs=model_kwargs,
                use_div_loss=cfg.use_div_loss) 
            loss = loss.mean()
        else:
            with amp.autocast(enabled=cfg.use_fp16):
                loss = diffusion.loss(
                        x0=video_data, 
                        t=t_round, 
                        model=model, 
                        model_kwargs=model_kwargs, 
                        use_div_loss=cfg.use_div_loss) # cfg.use_div_loss: False    loss: [80]
                loss = loss.mean()
        
        # backward
        if cfg.use_fsdp:
            optimizer.zero_grad()
            loss.backward()
            torch.nn.utils.clip_grad_value_(model.parameters(), 0.05)
            optimizer.step()
        else:
            optimizer.zero_grad()
            scaler.scale(loss).backward()
            scaler.step(optimizer)
            scaler.update()
        
        if not cfg.use_fsdp:
            scheduler.step()
        
        # ema update
        if cfg.use_ema:
            temp_state_dict = model.module.state_dict() if hasattr(model, 'module') else model.state_dict()
            for k, v in ema.items():
                v.copy_(temp_state_dict[k].lerp(v, cfg.ema_decay))

        all_reduce(loss)
        loss = loss / cfg.world_size
        
        if cfg.rank == 0 and step % cfg.log_interval == 0: # cfg.log_interval: 100
            logging.info(f'Step: {step}/{cfg.num_steps} Loss: {loss.item():.3f} scale: {scaler.get_scale():.1f} LR: {scheduler.get_lr():.7f}')

        # Visualization
        if step == resume_step or step == cfg.num_steps or step % cfg.viz_interval == 0:
            with torch.no_grad():
                try:
                    visual_kwards = [
                        {
                            'y': y_words_0[:viz_num],
                            'fps': fps_tensor[:viz_num],
                        },
                        {
                            'y': zero_y_negative.repeat(y_words_0.size(0), 1, 1),
                            'fps': fps_tensor[:viz_num],
                        }
                    ]
                    input_kwards = {
                        'model': model, 'video_data': video_data[:viz_num], 'step': step, 
                        'ref_frame': ref_frame[:viz_num], 'captions': captions[:viz_num]}
                    visual_func.run(visual_kwards=visual_kwards, **input_kwards)
                except Exception as e:
                    logging.info(f'Save videos with exception {e}')
        
        # Save checkpoint
        if step == cfg.num_steps or step % cfg.save_ckp_interval == 0 or step == resume_step:
            os.makedirs(osp.join(cfg.log_dir, 'checkpoints'), exist_ok=True)
            if cfg.use_ema:
                local_ema_model_path = osp.join(cfg.log_dir, f'checkpoints/ema_{step:08d}_rank{cfg.rank:04d}.pth')
                save_dict = {
                    'state_dict': ema.module.state_dict() if hasattr(ema, 'module') else ema,
                    'step': step}
                torch.save(save_dict, local_ema_model_path)
                if cfg.rank == 0:
                    logging.info(f'Begin to Save ema model to {local_ema_model_path}')
            if cfg.rank == 0:
                local_model_path = osp.join(cfg.log_dir, f'checkpoints/non_ema_{step:08d}.pth')
                logging.info(f'Begin to Save model to {local_model_path}')
                save_dict = {
                    'state_dict': model.module.state_dict() if not cfg.debug else model.state_dict(),
                    'step': step}
                torch.save(save_dict, local_model_path)
                logging.info(f'Save model to {local_model_path}')
    
    if cfg.rank == 0:
        logging.info('Congratulations! The training is completed!')
    
    # synchronize to finish some processes
    if not cfg.debug:
        torch.cuda.synchronize()
        dist.barrier()