unet_sr600.py 17.3 KB
Newer Older
mashun1's avatar
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
'''
/* 
*Copyright (c) 2021, Alibaba Group;
*Licensed under the Apache License, Version 2.0 (the "License");
*you may not use this file except in compliance with the License.
*You may obtain a copy of the License at

*   http://www.apache.org/licenses/LICENSE-2.0

*Unless required by applicable law or agreed to in writing, software
*distributed under the License is distributed on an "AS IS" BASIS,
*WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*See the License for the specific language governing permissions and
*limitations under the License.
*/
'''

import math
import torch
import torch.nn as nn
from einops import rearrange
import torch.nn.functional as F
from .util import *
from utils.registry_class import MODEL
import torch.fft as fft

USE_TEMPORAL_TRANSFORMER = True


def Fourier_filter(x, threshold, scale):
    dtype = x.dtype
    x = x.type(torch.float32)
    # FFT
    x_freq = fft.fftn(x, dim=(-2, -1))
    x_freq = fft.fftshift(x_freq, dim=(-2, -1))
    
    B, C, H, W = x_freq.shape
    mask = torch.ones((B, C, H, W)).cuda() 

    crow, ccol = H // 2, W //2
    mask[..., crow - threshold:crow + threshold, ccol - threshold:ccol + threshold] = scale
    x_freq = x_freq * mask

    # IFFT
    x_freq = fft.ifftshift(x_freq, dim=(-2, -1))
    x_filtered = fft.ifftn(x_freq, dim=(-2, -1)).real
    
    x_filtered = x_filtered.type(dtype)
    return x_filtered


@MODEL.register_class()
class UNetSD_SR600(nn.Module):
    def __init__(self,
                 in_dim=7,
                 dim=512,
                 y_dim=512,
                 context_dim=512,
                 out_dim=6,
                 dim_mult=[1, 2, 3, 4],
                 num_heads=None,
                 head_dim=64,
                 num_res_blocks=3,
                 attn_scales=[1 / 2, 1 / 4, 1 / 8],
                 use_scale_shift_norm=True,
                 dropout=0.1,
                 temporal_attn_times=1,
                 temporal_attention = True,
                 use_checkpoint=False,
                 use_image_dataset=False,
                 use_sim_mask = False,
                 inpainting=True,
                 **kwargs):
        embed_dim = dim * 4
        num_heads=num_heads if num_heads else dim//32
        super(UNetSD_SR600, self).__init__()
        self.in_dim = in_dim # 4
        self.dim = dim # 320
        self.y_dim = y_dim # 768
        self.context_dim = context_dim # 1024
        self.embed_dim = embed_dim # 1280
        self.out_dim = out_dim # 4
        self.dim_mult = dim_mult # [1, 2, 4, 4]
        ### for temporal attention
        self.num_heads = num_heads # 8
        ### for spatial attention
        self.head_dim = head_dim # 64
        self.num_res_blocks = num_res_blocks # 2
        self.attn_scales = attn_scales # [1.0, 0.5, 0.25]
        self.use_scale_shift_norm = use_scale_shift_norm # True
        self.temporal_attn_times = temporal_attn_times # 1
        self.temporal_attention = temporal_attention # True
        self.use_checkpoint = use_checkpoint # True
        self.use_image_dataset = use_image_dataset # False
        self.use_sim_mask = use_sim_mask # False
        self.inpainting = inpainting # True

        use_linear_in_temporal = False
        transformer_depth = 1
        disabled_sa = False
        # params
        enc_dims = [dim * u for u in [1] + dim_mult] # [320, 320, 640, 1280, 1280]
        dec_dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]] # [1280, 1280, 1280, 640, 320]
        shortcut_dims = []
        scale = 1.0

        # embeddings
        self.time_embed = nn.Sequential(
            nn.Linear(dim, embed_dim), # [320,1280]
            nn.SiLU(),
            nn.Linear(embed_dim, embed_dim))
        
        # encoder
        self.input_blocks = nn.ModuleList()
        init_block = nn.ModuleList([nn.Conv2d(self.in_dim, dim, 3, padding=1)])
        ####need an initial temporal attention?
        if temporal_attention:
            if USE_TEMPORAL_TRANSFORMER:
                init_block.append(TemporalTransformer(dim, num_heads, head_dim, depth=transformer_depth, context_dim=context_dim,
                                disable_self_attn=disabled_sa, use_linear=use_linear_in_temporal, multiply_zero=use_image_dataset))
            else:
                init_block.append(TemporalAttentionMultiBlock(dim, num_heads, head_dim, rotary_emb=self.rotary_emb, temporal_attn_times=temporal_attn_times, use_image_dataset=use_image_dataset))
        # elif temporal_conv:
        # init_block.append(InitTemporalConvBlock(dim,dropout=dropout,use_image_dataset=use_image_dataset))
        self.input_blocks.append(init_block)
        shortcut_dims.append(dim)
        for i, (in_dim, out_dim) in enumerate(zip(enc_dims[:-1], enc_dims[1:])):
            for j in range(num_res_blocks):
                block = nn.ModuleList([ResBlock(in_dim, embed_dim, dropout, out_channels=out_dim, use_scale_shift_norm=False, use_image_dataset=use_image_dataset,)])
                if scale in attn_scales:
                    # block.append(FlashAttentionBlock(out_dim, context_dim, num_heads, head_dim))
                    block.append(
                            SpatialTransformer(
                                out_dim, out_dim // head_dim, head_dim, depth=1, context_dim=self.context_dim,
                                disable_self_attn=False, use_linear=True
                            )
                    )
                    if self.temporal_attention:
                        if USE_TEMPORAL_TRANSFORMER:
                            block.append(TemporalTransformer(out_dim, out_dim // head_dim, head_dim, depth=transformer_depth, context_dim=context_dim,
                                disable_self_attn=disabled_sa, use_linear=use_linear_in_temporal, multiply_zero=use_image_dataset))
                        else:
                            block.append(TemporalAttentionMultiBlock(out_dim, num_heads, head_dim, rotary_emb = self.rotary_emb, use_image_dataset=use_image_dataset, use_sim_mask=use_sim_mask, temporal_attn_times=temporal_attn_times))
                in_dim = out_dim
                self.input_blocks.append(block)
                shortcut_dims.append(out_dim)

                # downsample
                if i != len(dim_mult) - 1 and j == num_res_blocks - 1:
                    # block = nn.ModuleList([ResidualBlock(out_dim, embed_dim, out_dim, use_scale_shift_norm, 'downsample')])
                    downsample = Downsample(
                        out_dim, True, dims=2, out_channels=out_dim, padding=(2, 1)
                    )
                    shortcut_dims.append(out_dim)
                    scale /= 2.0
                    # block.append(TemporalConvBlock(out_dim,dropout=dropout,use_image_dataset=use_image_dataset))
                    self.input_blocks.append(downsample)
        
        self.middle_block = nn.ModuleList([
            ResBlock(out_dim, embed_dim, dropout, use_scale_shift_norm=False, use_image_dataset=use_image_dataset,),
            SpatialTransformer(
                out_dim, out_dim // head_dim, head_dim, depth=1, context_dim=self.context_dim,
                disable_self_attn=False, use_linear=True
            )])        
        
        if self.temporal_attention:
            if USE_TEMPORAL_TRANSFORMER:
                self.middle_block.append(
                 TemporalTransformer( 
                            out_dim, out_dim // head_dim, head_dim, depth=transformer_depth, context_dim=context_dim,
                            disable_self_attn=disabled_sa, use_linear=use_linear_in_temporal,
                            multiply_zero=use_image_dataset,
                        )
                )
            else:
                self.middle_block.append(TemporalAttentionMultiBlock(out_dim, num_heads, head_dim, rotary_emb =  self.rotary_emb, use_image_dataset=use_image_dataset, use_sim_mask=use_sim_mask, temporal_attn_times=temporal_attn_times))        

        self.middle_block.append(ResBlock(out_dim, embed_dim, dropout, use_scale_shift_norm=False))

        # decoder
        self.output_blocks = nn.ModuleList()
        for i, (in_dim, out_dim) in enumerate(zip(dec_dims[:-1], dec_dims[1:])):
            for j in range(num_res_blocks + 1):
                block = nn.ModuleList([ResBlock(in_dim + shortcut_dims.pop(), embed_dim, dropout, out_dim, use_scale_shift_norm=False, use_image_dataset=use_image_dataset, )])
                if scale in attn_scales:
                    block.append(
                        SpatialTransformer(
                            out_dim, out_dim // head_dim, head_dim, depth=1, context_dim=1024,
                            disable_self_attn=False, use_linear=True
                        )
                    )
                    if self.temporal_attention:
                        if USE_TEMPORAL_TRANSFORMER:
                            block.append(
                                TemporalTransformer(
                                    out_dim, out_dim // head_dim, head_dim, depth=transformer_depth, context_dim=context_dim,
                                    disable_self_attn=disabled_sa, use_linear=use_linear_in_temporal, multiply_zero=use_image_dataset
                                    )
                            )
                        else:
                            block.append(TemporalAttentionMultiBlock(out_dim, num_heads, head_dim, rotary_emb =self.rotary_emb, use_image_dataset=use_image_dataset, use_sim_mask=use_sim_mask, temporal_attn_times=temporal_attn_times))
                in_dim = out_dim

                # upsample
                if i != len(dim_mult) - 1 and j == num_res_blocks:
                    upsample = UpsampleSR600(out_dim, True, dims=2.0, out_channels=out_dim)
                    scale *= 2.0
                    block.append(upsample)
                self.output_blocks.append(block)

        # head
        self.out = nn.Sequential(
            nn.GroupNorm(32, out_dim),
            nn.SiLU(),
            nn.Conv2d(out_dim, self.out_dim, 3, padding=1))
        
        # zero out the last layer params
        nn.init.zeros_(self.out[-1].weight)
    
    def forward(self, 
        x,
        t,
        y,
        x_lr=None,
        fps=None,
        video_mask=None,
        focus_present_mask = None,
        prob_focus_present = 0.,  # probability at which a given batch sample will focus on the present (0. is all off, 1. is completely arrested attention across time)
        mask_last_frame_num = 0  # mask last frame num
        ):

        batch, x_c, x_f, x_h, x_w= x.shape
        device = x.device
        self.batch = batch

        #### image and video joint training, if mask_last_frame_num is set, prob_focus_present will be ignored
        if mask_last_frame_num > 0:
            focus_present_mask = None
            video_mask[-mask_last_frame_num:] = False
        else:
            focus_present_mask = default(focus_present_mask, lambda: prob_mask_like((batch,), prob_focus_present, device = device)) # [False, False]

        if self.temporal_attention and not USE_TEMPORAL_TRANSFORMER:
            time_rel_pos_bias = self.time_rel_pos_bias(x.shape[2], device = x.device)
        else:
            time_rel_pos_bias = None
        
        # embeddings
        e = self.time_embed(sinusoidal_embedding(t, self.dim)) #+ self.y_embedding(y)
        context = y #self.context_embedding(y).view(-1, 4, self.context_dim)

        # repeat f times for spatial e and context
        e=e.repeat_interleave(repeats=x_f, dim=0)
        context=context.repeat_interleave(repeats=x_f, dim=0)

        # x = torch.cat([x, temp_x_lr], dim=1)
        # x = x + temp_x_lr
        ## always in shape (b f) c h w, except for temporal layer
        x = rearrange(x, 'b c f h w -> (b f) c h w')
        # encoder
        xs = []
        for idx, block in enumerate(self.input_blocks):
            x = self._forward_single(block, x, e, context, time_rel_pos_bias, focus_present_mask, video_mask)
            xs.append(x)
            # print(f"encoder shape: {x.shape}")
        
        # middle
        for block in self.middle_block:
            x = self._forward_single(block, x, e, context, time_rel_pos_bias,focus_present_mask, video_mask)
        # print(f"mid shape: {x.shape}")

        # decoder
        b_num = 0
        for block in self.output_blocks:
            # print(f"decoder shape: {x.shape}")
            if b_num == 0:
                temp_b, temp_c, _, _ = x.size()
                x[:,:temp_c//2] = x[:,:temp_c//2] * 1.1
                hs_ = xs.pop()
                hs_ = Fourier_filter(hs_, threshold=1, scale=0.6)
                x = torch.cat([x, hs_], dim=1)
            elif b_num == 1:
                temp_b, temp_c, _, _ = x.size()
                x[:,:temp_c//2] = x[:,:temp_c//2] * 1.2
                hs_ = xs.pop()
                hs_ = Fourier_filter(hs_, threshold=1, scale=0.4)
                x = torch.cat([x, hs_], dim=1)
            else:
                x = torch.cat([x, xs.pop()], dim=1)
            # x = torch.cat([x, xs.pop()], dim=1)
            b_num += 1
            x = self._forward_single(block, x, e, context, time_rel_pos_bias,focus_present_mask, video_mask, reference=xs[-1] if len(xs) > 0 else None)
        
        # head
        x = self.out(x) # [32, 4, 32, 32]

        # reshape back to (b c f h w)
        x = rearrange(x, '(b f) c h w -> b c f h w', b = batch)
        return x
    
    def _forward_single(self, module, x, e, context, time_rel_pos_bias, focus_present_mask, video_mask, reference=None):
        if isinstance(module, ResidualBlock):
            module = checkpoint_wrapper(module) if self.use_checkpoint else module
            x = x.contiguous()
            x = module(x, e, reference)
        elif isinstance(module, ResBlock):
            module = checkpoint_wrapper(module) if self.use_checkpoint else module
            x = x.contiguous()
            x = module(x, e, self.batch)
        elif isinstance(module, SpatialTransformer):
            module = checkpoint_wrapper(module) if self.use_checkpoint else module
            x = module(x, context)
        elif isinstance(module, TemporalTransformer):
            module = checkpoint_wrapper(module) if self.use_checkpoint else module
            x = rearrange(x, '(b f) c h w -> b c f h w', b = self.batch)
            x = module(x, context)
            x = rearrange(x, 'b c f h w -> (b f) c h w')
        elif isinstance(module, CrossAttention):
            module = checkpoint_wrapper(module) if self.use_checkpoint else module
            x = module(x, context)
        elif isinstance(module, MemoryEfficientCrossAttention):
            module = checkpoint_wrapper(module) if self.use_checkpoint else module
            x = module(x, context)
        elif isinstance(module, BasicTransformerBlock):
            module = checkpoint_wrapper(module) if self.use_checkpoint else module
            x = module(x, context)
        elif isinstance(module, FeedForward):
            # module = checkpoint_wrapper(module) if self.use_checkpoint else module
            x = module(x, context)
        elif isinstance(module, Upsample):
            # module = checkpoint_wrapper(module) if self.use_checkpoint else module
            x = module(x)
        elif isinstance(module, Downsample):
            # module = checkpoint_wrapper(module) if self.use_checkpoint else module
            x = module(x)
        elif isinstance(module, Resample):
            # module = checkpoint_wrapper(module) if self.use_checkpoint else module
            x = module(x, reference)
        elif isinstance(module, TemporalAttentionBlock):
            module = checkpoint_wrapper(module) if self.use_checkpoint else module
            x = rearrange(x, '(b f) c h w -> b c f h w', b = self.batch)
            x = module(x, time_rel_pos_bias, focus_present_mask, video_mask)
            x = rearrange(x, 'b c f h w -> (b f) c h w')
        elif isinstance(module, TemporalAttentionMultiBlock):
            module = checkpoint_wrapper(module) if self.use_checkpoint else module
            x = rearrange(x, '(b f) c h w -> b c f h w', b = self.batch)
            x = module(x, time_rel_pos_bias, focus_present_mask, video_mask)
            x = rearrange(x, 'b c f h w -> (b f) c h w')
        elif isinstance(module, InitTemporalConvBlock):
            module = checkpoint_wrapper(module) if self.use_checkpoint else module
            x = rearrange(x, '(b f) c h w -> b c f h w', b = self.batch)
            x = module(x)
            x = rearrange(x, 'b c f h w -> (b f) c h w')
        elif isinstance(module, TemporalConvBlock):
            module = checkpoint_wrapper(module) if self.use_checkpoint else module
            x = rearrange(x, '(b f) c h w -> b c f h w', b = self.batch)
            x = module(x)
            x = rearrange(x, 'b c f h w -> (b f) c h w')
        elif isinstance(module, nn.ModuleList):
            for block in module:
                x = self._forward_single(block,  x, e, context, time_rel_pos_bias, focus_present_mask, video_mask, reference)
        else:
            x = module(x)
        return x


if __name__ == '__main__':

    # [model] unet
    sd_model = UNetSDSR600(
        in_dim=4,
        dim=320,
        y_dim=1024,
        context_dim=1024,
        out_dim=4,
        dim_mult=[1, 2, 4, 4],
        num_heads=8,
        head_dim=64,
        num_res_blocks=2,
        attn_scales=[1 / 1, 1 / 2, 1 / 4],
        use_scale_shift_norm=True,
        dropout=0.1,
        temporal_attn_times=1,
        temporal_attention = True,
        use_checkpoint=True,
        use_image_dataset=False,
        use_sim_mask = False,
        inpainting=True,
        training=False)