diffusion_ddim.py 23.5 KB
Newer Older
mashun1's avatar
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
import torch
import math

from utils.registry_class import DIFFUSION
from .schedules import beta_schedule, sigma_schedule
from .losses import kl_divergence, discretized_gaussian_log_likelihood
# from .dpm_solver import NoiseScheduleVP, model_wrapper_guided_diffusion, model_wrapper, DPM_Solver

def _i(tensor, t, x):
    r"""Index tensor using t and format the output according to x.
    """
    if tensor.device != x.device:
        tensor = tensor.to(x.device)
    shape = (x.size(0), ) + (1, ) * (x.ndim - 1)
    return tensor[t].view(shape).to(x)

@DIFFUSION.register_class()
class DiffusionDDIMSR(object):
    def __init__(self, reverse_diffusion, forward_diffusion, **kwargs):
        from .diffusion_gauss import GaussianDiffusion
        self.reverse_diffusion = GaussianDiffusion(sigmas=sigma_schedule(reverse_diffusion.schedule, **reverse_diffusion.schedule_param), 
                                                   prediction_type=reverse_diffusion.mean_type)
        self.forward_diffusion = GaussianDiffusion(sigmas=sigma_schedule(forward_diffusion.schedule, **forward_diffusion.schedule_param), 
                                                   prediction_type=forward_diffusion.mean_type)


@DIFFUSION.register_class()
class DiffusionDDIM(object):
    def __init__(self,
                 schedule='linear_sd',
                 schedule_param={},
                 mean_type='eps',
                 var_type='learned_range',
                 loss_type='mse',
                 epsilon = 1e-12,
                 rescale_timesteps=False,
                 noise_strength=0.0, 
                 **kwargs):
        # check input
        # check input
        assert mean_type in ['x0', 'x_{t-1}', 'eps', 'v']
        assert var_type in ['learned', 'learned_range', 'fixed_large', 'fixed_small']
        assert loss_type in ['mse', 'rescaled_mse', 'kl', 'rescaled_kl', 'l1', 'rescaled_l1','charbonnier']
        
        betas = beta_schedule(schedule, **schedule_param)
        assert min(betas) > 0 and max(betas) <= 1

        if not isinstance(betas, torch.DoubleTensor):
            betas = torch.tensor(betas, dtype=torch.float64)

        self.betas = betas
        self.num_timesteps = len(betas)
        self.mean_type = mean_type # eps
        self.var_type = var_type # 'fixed_small'
        self.loss_type = loss_type # mse
        self.epsilon = epsilon # 1e-12
        self.rescale_timesteps = rescale_timesteps # False
        self.noise_strength = noise_strength # 0.0

        # alphas
        alphas = 1 - self.betas
        self.alphas_cumprod = torch.cumprod(alphas, dim=0)
        self.alphas_cumprod_prev = torch.cat([alphas.new_ones([1]), self.alphas_cumprod[:-1]])
        self.alphas_cumprod_next = torch.cat([self.alphas_cumprod[1:], alphas.new_zeros([1])])
        
        # q(x_t | x_{t-1})
        self.sqrt_alphas_cumprod = torch.sqrt(self.alphas_cumprod)
        self.sqrt_one_minus_alphas_cumprod = torch.sqrt(1.0 - self.alphas_cumprod)
        self.log_one_minus_alphas_cumprod = torch.log(1.0 - self.alphas_cumprod)
        self.sqrt_recip_alphas_cumprod = torch.sqrt(1.0 / self.alphas_cumprod)
        self.sqrt_recipm1_alphas_cumprod = torch.sqrt(1.0 / self.alphas_cumprod - 1)

        # q(x_{t-1} | x_t, x_0)
        self.posterior_variance = betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
        self.posterior_log_variance_clipped = torch.log(self.posterior_variance.clamp(1e-20))
        self.posterior_mean_coef1 = betas * torch.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
        self.posterior_mean_coef2 = (1.0 - self.alphas_cumprod_prev) * torch.sqrt(alphas) / (1.0 - self.alphas_cumprod)
    

    def sample_loss(self, x0, noise=None):
        if noise is None:
            noise = torch.randn_like(x0)
            if self.noise_strength > 0:
                b, c, f, _, _= x0.shape
                offset_noise = torch.randn(b, c, f, 1, 1, device=x0.device)
                noise = noise + self.noise_strength * offset_noise
        return noise


    def q_sample(self, x0, t, noise=None):
        r"""Sample from q(x_t | x_0).
        """
        # noise = torch.randn_like(x0) if noise is None else noise
        noise = self.sample_loss(x0, noise)
        return _i(self.sqrt_alphas_cumprod, t, x0) * x0 + \
               _i(self.sqrt_one_minus_alphas_cumprod, t, x0) * noise

    def q_mean_variance(self, x0, t):
        r"""Distribution of q(x_t | x_0).
        """
        mu = _i(self.sqrt_alphas_cumprod, t, x0) * x0
        var = _i(1.0 - self.alphas_cumprod, t, x0)
        log_var = _i(self.log_one_minus_alphas_cumprod, t, x0)
        return mu, var, log_var
    
    def q_posterior_mean_variance(self, x0, xt, t):
        r"""Distribution of q(x_{t-1} | x_t, x_0).
        """
        mu = _i(self.posterior_mean_coef1, t, xt) * x0 + _i(self.posterior_mean_coef2, t, xt) * xt
        var = _i(self.posterior_variance, t, xt)
        log_var = _i(self.posterior_log_variance_clipped, t, xt)
        return mu, var, log_var
    
    @torch.no_grad()
    def p_sample(self, xt, t, model, model_kwargs={}, clamp=None, percentile=None, condition_fn=None, guide_scale=None):
        r"""Sample from p(x_{t-1} | x_t).
            - condition_fn: for classifier-based guidance (guided-diffusion).
            - guide_scale: for classifier-free guidance (glide/dalle-2).
        """
        # predict distribution of p(x_{t-1} | x_t)
        mu, var, log_var, x0 = self.p_mean_variance(xt, t, model, model_kwargs, clamp, percentile, guide_scale)

        # random sample (with optional conditional function)
        noise = torch.randn_like(xt)
        mask = t.ne(0).float().view(-1, *((1, ) * (xt.ndim - 1)))  # no noise when t == 0
        if condition_fn is not None:
            grad = condition_fn(xt, self._scale_timesteps(t), **model_kwargs)
            mu = mu.float() + var * grad.float()
        xt_1 = mu + mask * torch.exp(0.5 * log_var) * noise
        return xt_1, x0
    
    @torch.no_grad()
    def p_sample_loop(self, noise, model, model_kwargs={}, clamp=None, percentile=None, condition_fn=None, guide_scale=None):
        r"""Sample from p(x_{t-1} | x_t) p(x_{t-2} | x_{t-1}) ... p(x_0 | x_1).
        """
        # prepare input
        b = noise.size(0)
        xt = noise
        
        # diffusion process
        for step in torch.arange(self.num_timesteps).flip(0):
            t = torch.full((b, ), step, dtype=torch.long, device=xt.device)
            xt, _ = self.p_sample(xt, t, model, model_kwargs, clamp, percentile, condition_fn, guide_scale)
        return xt
    
    def p_mean_variance(self, xt, t, model, model_kwargs={}, clamp=None, percentile=None, guide_scale=None):
        r"""Distribution of p(x_{t-1} | x_t).
        """
        # predict distribution
        if guide_scale is None:
            out = model(xt, self._scale_timesteps(t), **model_kwargs)
        else:
            # classifier-free guidance
            # (model_kwargs[0]: conditional kwargs; model_kwargs[1]: non-conditional kwargs)
            assert isinstance(model_kwargs, list) and len(model_kwargs) == 2
            y_out = model(xt, self._scale_timesteps(t), **model_kwargs[0])
            u_out = model(xt, self._scale_timesteps(t), **model_kwargs[1])
            dim = y_out.size(1) if self.var_type.startswith('fixed') else y_out.size(1) // 2
            out = torch.cat([
                u_out[:, :dim] + guide_scale * (y_out[:, :dim] - u_out[:, :dim]),
                y_out[:, dim:]], dim=1) # guide_scale=9.0
        
        # compute variance
        if self.var_type == 'learned':
            out, log_var = out.chunk(2, dim=1)
            var = torch.exp(log_var)
        elif self.var_type == 'learned_range':
            out, fraction = out.chunk(2, dim=1)
            min_log_var = _i(self.posterior_log_variance_clipped, t, xt)
            max_log_var = _i(torch.log(self.betas), t, xt)
            fraction = (fraction + 1) / 2.0
            log_var = fraction * max_log_var + (1 - fraction) * min_log_var
            var = torch.exp(log_var)
        elif self.var_type == 'fixed_large':
            var = _i(torch.cat([self.posterior_variance[1:2], self.betas[1:]]), t, xt)
            log_var = torch.log(var)
        elif self.var_type == 'fixed_small':
            var = _i(self.posterior_variance, t, xt)
            log_var = _i(self.posterior_log_variance_clipped, t, xt)
        
        # compute mean and x0
        if self.mean_type == 'x_{t-1}':
            mu = out  # x_{t-1}
            x0 = _i(1.0 / self.posterior_mean_coef1, t, xt) * mu - \
                 _i(self.posterior_mean_coef2 / self.posterior_mean_coef1, t, xt) * xt
        elif self.mean_type == 'x0':
            x0 = out
            mu, _, _ = self.q_posterior_mean_variance(x0, xt, t)
        elif self.mean_type == 'eps':
            x0 = _i(self.sqrt_recip_alphas_cumprod, t, xt) * xt - \
                 _i(self.sqrt_recipm1_alphas_cumprod, t, xt) * out
            mu, _, _ = self.q_posterior_mean_variance(x0, xt, t)
        elif self.mean_type == 'v':
            x0 = _i(self.sqrt_alphas_cumprod, t, xt) * xt - \
                 _i(self.sqrt_one_minus_alphas_cumprod, t, xt) * out
            mu, _, _ = self.q_posterior_mean_variance(x0, xt, t)
        
        # restrict the range of x0
        if percentile is not None:
            assert percentile > 0 and percentile <= 1  # e.g., 0.995
            s = torch.quantile(x0.flatten(1).abs(), percentile, dim=1).clamp_(1.0).view(-1, 1, 1, 1)
            x0 = torch.min(s, torch.max(-s, x0)) / s
        elif clamp is not None:
            x0 = x0.clamp(-clamp, clamp)
        return mu, var, log_var, x0

    @torch.no_grad()
    def ddim_sample(self, xt, t, model, model_kwargs={}, clamp=None, percentile=None, condition_fn=None, guide_scale=None, ddim_timesteps=20, eta=0.0):
        r"""Sample from p(x_{t-1} | x_t) using DDIM.
            - condition_fn: for classifier-based guidance (guided-diffusion).
            - guide_scale: for classifier-free guidance (glide/dalle-2).
        """
        stride = self.num_timesteps // ddim_timesteps
        
        # predict distribution of p(x_{t-1} | x_t)
        _, _, _, x0 = self.p_mean_variance(xt, t, model, model_kwargs, clamp, percentile, guide_scale)
        if condition_fn is not None:
            # x0 -> eps
            alpha = _i(self.alphas_cumprod, t, xt)
            eps = (_i(self.sqrt_recip_alphas_cumprod, t, xt) * xt - x0) / \
                  _i(self.sqrt_recipm1_alphas_cumprod, t, xt)
            eps = eps - (1 - alpha).sqrt() * condition_fn(xt, self._scale_timesteps(t), **model_kwargs)

            # eps -> x0
            x0 = _i(self.sqrt_recip_alphas_cumprod, t, xt) * xt - \
                 _i(self.sqrt_recipm1_alphas_cumprod, t, xt) * eps
        
        # derive variables
        eps = (_i(self.sqrt_recip_alphas_cumprod, t, xt) * xt - x0) / \
              _i(self.sqrt_recipm1_alphas_cumprod, t, xt)
        alphas = _i(self.alphas_cumprod, t, xt)
        alphas_prev = _i(self.alphas_cumprod, (t - stride).clamp(0), xt)
        sigmas = eta * torch.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))

        # random sample
        noise = torch.randn_like(xt)
        direction = torch.sqrt(1 - alphas_prev - sigmas ** 2) * eps
        mask = t.ne(0).float().view(-1, *((1, ) * (xt.ndim - 1)))
        xt_1 = torch.sqrt(alphas_prev) * x0 + direction + mask * sigmas * noise
        return xt_1, x0
    
    @torch.no_grad()
    def ddim_sample_loop(self, noise, model, model_kwargs={}, clamp=None, percentile=None, condition_fn=None, guide_scale=None, ddim_timesteps=20, eta=0.0):
        # prepare input
        b = noise.size(0)
        xt = noise

        # diffusion process (TODO: clamp is inaccurate! Consider replacing the stride by explicit prev/next steps)
        steps = (1 + torch.arange(0, self.num_timesteps, self.num_timesteps // ddim_timesteps)).clamp(0, self.num_timesteps - 1).flip(0)
        for step in steps:
            t = torch.full((b, ), step, dtype=torch.long, device=xt.device)
            xt, _ = self.ddim_sample(xt, t, model, model_kwargs, clamp, percentile, condition_fn, guide_scale, ddim_timesteps, eta)
        return xt
    
    @torch.no_grad()
    def ddim_reverse_sample(self, xt, t, model, model_kwargs={}, clamp=None, percentile=None, guide_scale=None, ddim_timesteps=20):
        r"""Sample from p(x_{t+1} | x_t) using DDIM reverse ODE (deterministic).
        """
        stride = self.num_timesteps // ddim_timesteps

        # predict distribution of p(x_{t-1} | x_t)
        _, _, _, x0 = self.p_mean_variance(xt, t, model, model_kwargs, clamp, percentile, guide_scale)

        # derive variables
        eps = (_i(self.sqrt_recip_alphas_cumprod, t, xt) * xt - x0) / \
              _i(self.sqrt_recipm1_alphas_cumprod, t, xt)
        alphas_next = _i(
            torch.cat([self.alphas_cumprod, self.alphas_cumprod.new_zeros([1])]),
            (t + stride).clamp(0, self.num_timesteps), xt)
        
        # reverse sample
        mu = torch.sqrt(alphas_next) * x0 + torch.sqrt(1 - alphas_next) * eps
        return mu, x0
    
    @torch.no_grad()
    def ddim_reverse_sample_loop(self, x0, model, model_kwargs={}, clamp=None, percentile=None, guide_scale=None, ddim_timesteps=20):
        # prepare input
        b = x0.size(0)
        xt = x0

        # reconstruction steps
        steps = torch.arange(0, self.num_timesteps, self.num_timesteps // ddim_timesteps)
        for step in steps:
            t = torch.full((b, ), step, dtype=torch.long, device=xt.device)
            xt, _ = self.ddim_reverse_sample(xt, t, model, model_kwargs, clamp, percentile, guide_scale, ddim_timesteps)
        return xt
    
    @torch.no_grad()
    def plms_sample(self, xt, t, model, model_kwargs={}, clamp=None, percentile=None, condition_fn=None, guide_scale=None, plms_timesteps=20):
        r"""Sample from p(x_{t-1} | x_t) using PLMS.
            - condition_fn: for classifier-based guidance (guided-diffusion).
            - guide_scale: for classifier-free guidance (glide/dalle-2).
        """
        stride = self.num_timesteps // plms_timesteps

        # function for compute eps
        def compute_eps(xt, t):
            # predict distribution of p(x_{t-1} | x_t)
            _, _, _, x0 = self.p_mean_variance(xt, t, model, model_kwargs, clamp, percentile, guide_scale)

            # condition
            if condition_fn is not None:
                # x0 -> eps
                alpha = _i(self.alphas_cumprod, t, xt)
                eps = (_i(self.sqrt_recip_alphas_cumprod, t, xt) * xt - x0) / \
                      _i(self.sqrt_recipm1_alphas_cumprod, t, xt)
                eps = eps - (1 - alpha).sqrt() * condition_fn(xt, self._scale_timesteps(t), **model_kwargs)

                # eps -> x0
                x0 = _i(self.sqrt_recip_alphas_cumprod, t, xt) * xt - \
                     _i(self.sqrt_recipm1_alphas_cumprod, t, xt) * eps
            
            # derive eps
            eps = (_i(self.sqrt_recip_alphas_cumprod, t, xt) * xt - x0) / \
                  _i(self.sqrt_recipm1_alphas_cumprod, t, xt)
            return eps
        
        # function for compute x_0 and x_{t-1}
        def compute_x0(eps, t):
            # eps -> x0
            x0 = _i(self.sqrt_recip_alphas_cumprod, t, xt) * xt - \
                 _i(self.sqrt_recipm1_alphas_cumprod, t, xt) * eps
            
            # deterministic sample
            alphas_prev = _i(self.alphas_cumprod, (t - stride).clamp(0), xt)
            direction = torch.sqrt(1 - alphas_prev) * eps
            mask = t.ne(0).float().view(-1, *((1, ) * (xt.ndim - 1)))
            xt_1 = torch.sqrt(alphas_prev) * x0 + direction
            return xt_1, x0
        
        # PLMS sample
        eps = compute_eps(xt, t)
        if len(eps_cache) == 0:
            # 2nd order pseudo improved Euler
            xt_1, x0 = compute_x0(eps, t)
            eps_next = compute_eps(xt_1, (t - stride).clamp(0))
            eps_prime = (eps + eps_next) / 2.0
        elif len(eps_cache) == 1:
            # 2nd order pseudo linear multistep (Adams-Bashforth)
            eps_prime = (3 * eps - eps_cache[-1]) / 2.0
        elif len(eps_cache) == 2:
            # 3nd order pseudo linear multistep (Adams-Bashforth)
            eps_prime = (23 * eps - 16 * eps_cache[-1] + 5 * eps_cache[-2]) / 12.0
        elif len(eps_cache) >= 3:
            # 4nd order pseudo linear multistep (Adams-Bashforth)
            eps_prime = (55 * eps - 59 * eps_cache[-1] + 37 * eps_cache[-2] - 9 * eps_cache[-3]) / 24.0
        xt_1, x0 = compute_x0(eps_prime, t)
        return xt_1, x0, eps

    @torch.no_grad()
    def plms_sample_loop(self, noise, model, model_kwargs={}, clamp=None, percentile=None, condition_fn=None, guide_scale=None, plms_timesteps=20):
        # prepare input
        b = noise.size(0)
        xt = noise

        # diffusion process
        steps = (1 + torch.arange(0, self.num_timesteps, self.num_timesteps // plms_timesteps)).clamp(0, self.num_timesteps - 1).flip(0)
        eps_cache = []
        for step in steps:
            # PLMS sampling step
            t = torch.full((b, ), step, dtype=torch.long, device=xt.device)
            xt, _, eps = self.plms_sample(xt, t, model, model_kwargs, clamp, percentile, condition_fn, guide_scale, plms_timesteps, eps_cache)
            
            # update eps cache
            eps_cache.append(eps)
            if len(eps_cache) >= 4:
                eps_cache.pop(0)
        return xt

    def loss(self, x0, t, model, model_kwargs={}, noise=None, weight = None, use_div_loss= False):

        # noise = torch.randn_like(x0) if noise is None else noise # [80, 4, 8, 32, 32]
        noise = self.sample_loss(x0, noise)

        xt = self.q_sample(x0, t, noise=noise)

        # compute loss
        if self.loss_type in ['kl', 'rescaled_kl']:
            loss, _ = self.variational_lower_bound(x0, xt, t, model, model_kwargs)
            if self.loss_type == 'rescaled_kl':
                loss = loss * self.num_timesteps
        elif self.loss_type in ['mse', 'rescaled_mse', 'l1', 'rescaled_l1']: # self.loss_type: mse
            out = model(xt, self._scale_timesteps(t), **model_kwargs)

            # VLB for variation
            loss_vlb = 0.0
            if self.var_type in ['learned', 'learned_range']: # self.var_type: 'fixed_small'
                out, var = out.chunk(2, dim=1)
                frozen = torch.cat([out.detach(), var], dim=1)  # learn var without affecting the prediction of mean
                loss_vlb, _ = self.variational_lower_bound(x0, xt, t, model=lambda *args, **kwargs: frozen)
                if self.loss_type.startswith('rescaled_'):
                    loss_vlb = loss_vlb * self.num_timesteps / 1000.0
            
            # MSE/L1 for x0/eps
            # target = {'eps': noise, 'x0': x0, 'x_{t-1}': self.q_posterior_mean_variance(x0, xt, t)[0]}[self.mean_type]
            target = {
                'eps': noise, 
                'x0': x0, 
                'x_{t-1}': self.q_posterior_mean_variance(x0, xt, t)[0], 
                'v':_i(self.sqrt_alphas_cumprod, t, xt) * noise - _i(self.sqrt_one_minus_alphas_cumprod, t, xt) * x0}[self.mean_type]
            loss = (out - target).pow(1 if self.loss_type.endswith('l1') else 2).abs().flatten(1).mean(dim=1)
            if weight is not None:
                loss = loss*weight   

            # div loss
            if use_div_loss and self.mean_type == 'eps' and x0.shape[2]>1:
                 
                # derive  x0
                x0_ = _i(self.sqrt_recip_alphas_cumprod, t, xt) * xt - \
                    _i(self.sqrt_recipm1_alphas_cumprod, t, xt) * out

                # # derive xt_1, set eta=0 as ddim
                # alphas_prev = _i(self.alphas_cumprod, (t - 1).clamp(0), xt)
                # direction = torch.sqrt(1 - alphas_prev) * out
                # xt_1 = torch.sqrt(alphas_prev) * x0_ + direction

                # ncfhw, std on f
                div_loss = 0.001/(x0_.std(dim=2).flatten(1).mean(dim=1)+1e-4)
                # print(div_loss,loss)
                loss = loss+div_loss

            # total loss
            loss = loss + loss_vlb
        elif self.loss_type in ['charbonnier']:
            out = model(xt, self._scale_timesteps(t), **model_kwargs)

            # VLB for variation
            loss_vlb = 0.0
            if self.var_type in ['learned', 'learned_range']:
                out, var = out.chunk(2, dim=1)
                frozen = torch.cat([out.detach(), var], dim=1)  # learn var without affecting the prediction of mean
                loss_vlb, _ = self.variational_lower_bound(x0, xt, t, model=lambda *args, **kwargs: frozen)
                if self.loss_type.startswith('rescaled_'):
                    loss_vlb = loss_vlb * self.num_timesteps / 1000.0
            
            # MSE/L1 for x0/eps
            target = {'eps': noise, 'x0': x0, 'x_{t-1}': self.q_posterior_mean_variance(x0, xt, t)[0]}[self.mean_type]
            loss = torch.sqrt((out - target)**2 + self.epsilon)
            if weight is not None:
                loss = loss*weight
            loss = loss.flatten(1).mean(dim=1)
            
            # total loss
            loss = loss + loss_vlb
        return loss

    def variational_lower_bound(self, x0, xt, t, model, model_kwargs={}, clamp=None, percentile=None):
        # compute groundtruth and predicted distributions
        mu1, _, log_var1 = self.q_posterior_mean_variance(x0, xt, t)
        mu2, _, log_var2, x0 = self.p_mean_variance(xt, t, model, model_kwargs, clamp, percentile)

        # compute KL loss
        kl = kl_divergence(mu1, log_var1, mu2, log_var2)
        kl = kl.flatten(1).mean(dim=1) / math.log(2.0)
        
        # compute discretized NLL loss (for p(x0 | x1) only)
        nll = -discretized_gaussian_log_likelihood(x0, mean=mu2, log_scale=0.5 * log_var2)
        nll = nll.flatten(1).mean(dim=1) / math.log(2.0)

        # NLL for p(x0 | x1) and KL otherwise
        vlb = torch.where(t == 0, nll, kl)
        return vlb, x0
    
    @torch.no_grad()
    def variational_lower_bound_loop(self, x0, model, model_kwargs={}, clamp=None, percentile=None):
        r"""Compute the entire variational lower bound, measured in bits-per-dim.
        """
        # prepare input and output
        b = x0.size(0)
        metrics = {'vlb': [], 'mse': [], 'x0_mse': []}

        # loop
        for step in torch.arange(self.num_timesteps).flip(0):
            # compute VLB
            t = torch.full((b, ), step, dtype=torch.long, device=x0.device)
            # noise = torch.randn_like(x0)
            noise = self.sample_loss(x0)
            xt = self.q_sample(x0, t, noise)
            vlb, pred_x0 = self.variational_lower_bound(x0, xt, t, model, model_kwargs, clamp, percentile)

            # predict eps from x0
            eps = (_i(self.sqrt_recip_alphas_cumprod, t, xt) * xt - x0) / \
                  _i(self.sqrt_recipm1_alphas_cumprod, t, xt)

            # collect metrics
            metrics['vlb'].append(vlb)
            metrics['x0_mse'].append((pred_x0 - x0).square().flatten(1).mean(dim=1))
            metrics['mse'].append((eps - noise).square().flatten(1).mean(dim=1))
        metrics = {k: torch.stack(v, dim=1) for k, v in metrics.items()}

        # compute the prior KL term for VLB, measured in bits-per-dim
        mu, _, log_var = self.q_mean_variance(x0, t)
        kl_prior = kl_divergence(mu, log_var, torch.zeros_like(mu), torch.zeros_like(log_var))
        kl_prior = kl_prior.flatten(1).mean(dim=1) / math.log(2.0)

        # update metrics
        metrics['prior_bits_per_dim'] = kl_prior
        metrics['total_bits_per_dim'] = metrics['vlb'].sum(dim=1) + kl_prior
        return metrics

    def _scale_timesteps(self, t):
        if self.rescale_timesteps:
            return t.float() * 1000.0 / self.num_timesteps
        return t
        #return t.float()