inference.py 31.5 KB
Newer Older
mashun1's avatar
hyi2v  
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
import os
import time
import random
import functools
from typing import List, Optional, Tuple, Union

from pathlib import Path
from loguru import logger

import torch
import torch.distributed as dist
from hyvideo.constants import PROMPT_TEMPLATE, NEGATIVE_PROMPT, PRECISION_TO_TYPE, NEGATIVE_PROMPT_I2V
from hyvideo.vae import load_vae
from hyvideo.modules import load_model
from hyvideo.text_encoder import TextEncoder
from hyvideo.utils.data_utils import align_to, get_closest_ratio, generate_crop_size_list
from hyvideo.utils.lora_utils import load_lora_for_pipeline
from hyvideo.modules.posemb_layers import get_nd_rotary_pos_embed
from hyvideo.modules.fp8_optimization import convert_fp8_linear
from hyvideo.diffusion.schedulers import FlowMatchDiscreteScheduler
from hyvideo.diffusion.pipelines import HunyuanVideoPipeline
import torchvision.transforms as transforms
from PIL import Image
import numpy as np
from safetensors.torch import load_file

try:
    import xfuser
    from xfuser.core.distributed import (
        get_sequence_parallel_world_size,
        get_sequence_parallel_rank,
        get_sp_group,
        initialize_model_parallel,
        init_distributed_environment
    )
except:
    xfuser = None
    get_sequence_parallel_world_size = None
    get_sequence_parallel_rank = None
    get_sp_group = None
    initialize_model_parallel = None
    init_distributed_environment = None


def parallelize_transformer(pipe):
    transformer = pipe.transformer
    original_forward = transformer.forward

    @functools.wraps(transformer.__class__.forward)
    def new_forward(
        self,
        x: torch.Tensor,
        t: torch.Tensor,  # Should be in range(0, 1000).
        text_states: torch.Tensor = None,
        text_mask: torch.Tensor = None,  # Now we don't use it.
        text_states_2: Optional[torch.Tensor] = None,  # Text embedding for modulation.
        freqs_cos: Optional[torch.Tensor] = None,
        freqs_sin: Optional[torch.Tensor] = None,
        guidance: torch.Tensor = None,  # Guidance for modulation, should be cfg_scale x 1000.
        return_dict: bool = True,
    ):
        if x.shape[-2] // 2 % get_sequence_parallel_world_size() == 0:
            # try to split x by height
            split_dim = -2
        elif x.shape[-1] // 2 % get_sequence_parallel_world_size() == 0:
            # try to split x by width
            split_dim = -1
        else:
            raise ValueError(f"Cannot split video sequence into ulysses_degree x ring_degree ({get_sequence_parallel_world_size()}) parts evenly")

        # patch sizes for the temporal, height, and width dimensions are 1, 2, and 2.
        temporal_size, h, w = x.shape[2], x.shape[3] // 2, x.shape[4] // 2

        x = torch.chunk(x, get_sequence_parallel_world_size(),dim=split_dim)[get_sequence_parallel_rank()]

        dim_thw = freqs_cos.shape[-1]
        freqs_cos = freqs_cos.reshape(temporal_size, h, w, dim_thw)
        freqs_cos = torch.chunk(freqs_cos, get_sequence_parallel_world_size(),dim=split_dim - 1)[get_sequence_parallel_rank()]
        freqs_cos = freqs_cos.reshape(-1, dim_thw)
        dim_thw = freqs_sin.shape[-1]
        freqs_sin = freqs_sin.reshape(temporal_size, h, w, dim_thw)
        freqs_sin = torch.chunk(freqs_sin, get_sequence_parallel_world_size(),dim=split_dim - 1)[get_sequence_parallel_rank()]
        freqs_sin = freqs_sin.reshape(-1, dim_thw)
        
        from xfuser.core.long_ctx_attention import xFuserLongContextAttention
        
        for block in transformer.double_blocks + transformer.single_blocks:
            block.hybrid_seq_parallel_attn = xFuserLongContextAttention()

        output = original_forward(
            x,
            t,
            text_states,
            text_mask,
            text_states_2,
            freqs_cos,
            freqs_sin,
            guidance,
            return_dict,
        )

        return_dict = not isinstance(output, tuple)
        sample = output["x"]
        sample = get_sp_group().all_gather(sample, dim=split_dim)
        output["x"] = sample
        return output

    new_forward = new_forward.__get__(transformer)
    transformer.forward = new_forward
    

class Inference(object):
    def __init__(
        self,
        args,
        vae,
        vae_kwargs,
        text_encoder,
        model,
        text_encoder_2=None,
        pipeline=None,
        use_cpu_offload=False,
        device=None,
        logger=None,
        parallel_args=None,
    ):
        self.vae = vae
        self.vae_kwargs = vae_kwargs

        self.text_encoder = text_encoder
        self.text_encoder_2 = text_encoder_2

        self.model = model
        self.pipeline = pipeline
        self.use_cpu_offload = use_cpu_offload

        self.args = args
        self.device = (
            device
            if device is not None
            else "cuda"
            if torch.cuda.is_available()
            else "cpu"
        )
        self.logger = logger
        self.parallel_args = parallel_args

    @classmethod
    def from_pretrained(cls, pretrained_model_path, args, device=None, **kwargs):
        """
        Initialize the Inference pipeline.

        Args:
            pretrained_model_path (str or pathlib.Path): The model path, including t2v, text encoder and vae checkpoints.
            args (argparse.Namespace): The arguments for the pipeline.
            device (int): The device for inference. Default is 0.
        """
        # ========================================================================
        logger.info(f"Got text-to-video model root path: {pretrained_model_path}")
        
        # ==================== Initialize Distributed Environment ================
        if args.ulysses_degree > 1 or args.ring_degree > 1:
            assert xfuser is not None, \
                "Ulysses Attention and Ring Attention requires xfuser package."

            assert args.use_cpu_offload is False, \
                "Cannot enable use_cpu_offload in the distributed environment."

            dist.init_process_group("nccl")

            assert dist.get_world_size() == args.ring_degree * args.ulysses_degree, \
                "number of GPUs should be equal to ring_degree * ulysses_degree."

            init_distributed_environment(rank=dist.get_rank(), world_size=dist.get_world_size())
            
            initialize_model_parallel(
                sequence_parallel_degree=dist.get_world_size(),
                ring_degree=args.ring_degree,
                ulysses_degree=args.ulysses_degree,
            )
            device = torch.device(f"cuda:{os.environ['LOCAL_RANK']}")
        else:
            if device is None:
                device = "cuda" if torch.cuda.is_available() else "cpu"

        parallel_args = {"ulysses_degree": args.ulysses_degree, "ring_degree": args.ring_degree}

        # ======================== Get the args path =============================

        # Disable gradient
        torch.set_grad_enabled(False)

        # =========================== Build main model ===========================
        logger.info("Building model...")
        factor_kwargs = {"device": device, "dtype": PRECISION_TO_TYPE[args.precision]}
        if args.i2v_mode and args.i2v_condition_type == "latent_concat":
            in_channels = args.latent_channels * 2 + 1
            image_embed_interleave = 2
        elif args.i2v_mode and args.i2v_condition_type == "token_replace":
            in_channels = args.latent_channels
            image_embed_interleave = 4
        else:
            in_channels = args.latent_channels
            image_embed_interleave = 1
        out_channels = args.latent_channels

        if args.embedded_cfg_scale:
            factor_kwargs["guidance_embed"] = True

        model = load_model(
            args,
            in_channels=in_channels,
            out_channels=out_channels,
            factor_kwargs=factor_kwargs,
        )

        if args.use_fp8:
            convert_fp8_linear(model, args.dit_weight, original_dtype=PRECISION_TO_TYPE[args.precision])
        model = model.to(device)
        model = Inference.load_state_dict(args, model, pretrained_model_path)
        model.eval()

        # ============================= Build extra models ========================
        # VAE
        vae, _, s_ratio, t_ratio = load_vae(
            args.vae,
            args.vae_precision,
            logger=logger,
            device=device if not args.use_cpu_offload else "cpu",
        )
        vae_kwargs = {"s_ratio": s_ratio, "t_ratio": t_ratio}

        # Text encoder
        if args.i2v_mode:
            args.text_encoder = "llm-i2v"
            args.tokenizer = "llm-i2v"
            args.prompt_template = "dit-llm-encode-i2v"
            args.prompt_template_video = "dit-llm-encode-video-i2v"

        if args.prompt_template_video is not None:
            crop_start = PROMPT_TEMPLATE[args.prompt_template_video].get(
                "crop_start", 0
            )
        elif args.prompt_template is not None:
            crop_start = PROMPT_TEMPLATE[args.prompt_template].get("crop_start", 0)
        else:
            crop_start = 0
        max_length = args.text_len + crop_start

        # prompt_template
        prompt_template = (
            PROMPT_TEMPLATE[args.prompt_template]
            if args.prompt_template is not None
            else None
        )

        # prompt_template_video
        prompt_template_video = (
            PROMPT_TEMPLATE[args.prompt_template_video]
            if args.prompt_template_video is not None
            else None
        )

        text_encoder = TextEncoder(
            text_encoder_type=args.text_encoder,
            max_length=max_length,
            text_encoder_precision=args.text_encoder_precision,
            tokenizer_type=args.tokenizer,
            i2v_mode=args.i2v_mode,
            prompt_template=prompt_template,
            prompt_template_video=prompt_template_video,
            hidden_state_skip_layer=args.hidden_state_skip_layer,
            apply_final_norm=args.apply_final_norm,
            reproduce=args.reproduce,
            logger=logger,
            device=device if not args.use_cpu_offload else "cpu",
            image_embed_interleave=image_embed_interleave
        )
        text_encoder_2 = None
        if args.text_encoder_2 is not None:
            text_encoder_2 = TextEncoder(
                text_encoder_type=args.text_encoder_2,
                max_length=args.text_len_2,
                text_encoder_precision=args.text_encoder_precision_2,
                tokenizer_type=args.tokenizer_2,
                reproduce=args.reproduce,
                logger=logger,
                device=device if not args.use_cpu_offload else "cpu",
            )

        return cls(
            args=args,
            vae=vae,
            vae_kwargs=vae_kwargs,
            text_encoder=text_encoder,
            text_encoder_2=text_encoder_2,
            model=model,
            use_cpu_offload=args.use_cpu_offload,
            device=device,
            logger=logger,
            parallel_args=parallel_args
        )

    @staticmethod
    def load_state_dict(args, model, pretrained_model_path):
        load_key = args.load_key
        if args.i2v_mode:
            dit_weight = Path(args.i2v_dit_weight)
        else:
            dit_weight = Path(args.dit_weight)

        if dit_weight is None:
            model_dir = pretrained_model_path / f"t2v_{args.model_resolution}"
            files = list(model_dir.glob("*.pt"))
            if len(files) == 0:
                raise ValueError(f"No model weights found in {model_dir}")
            if str(files[0]).startswith("pytorch_model_"):
                model_path = dit_weight / f"pytorch_model_{load_key}.pt"
                bare_model = True
            elif any(str(f).endswith("_model_states.pt") for f in files):
                files = [f for f in files if str(f).endswith("_model_states.pt")]
                model_path = files[0]
                if len(files) > 1:
                    logger.warning(
                        f"Multiple model weights found in {dit_weight}, using {model_path}"
                    )
                bare_model = False
            else:
                raise ValueError(
                    f"Invalid model path: {dit_weight} with unrecognized weight format: "
                    f"{list(map(str, files))}. When given a directory as --dit-weight, only "
                    f"`pytorch_model_*.pt`(provided by HunyuanDiT official) and "
                    f"`*_model_states.pt`(saved by deepspeed) can be parsed. If you want to load a "
                    f"specific weight file, please provide the full path to the file."
                )
        else:
            if dit_weight.is_dir():
                files = list(dit_weight.glob("*.pt"))
                if len(files) == 0:
                    raise ValueError(f"No model weights found in {dit_weight}")
                if str(files[0]).startswith("pytorch_model_"):
                    model_path = dit_weight / f"pytorch_model_{load_key}.pt"
                    bare_model = True
                elif any(str(f).endswith("_model_states.pt") for f in files):
                    files = [f for f in files if str(f).endswith("_model_states.pt")]
                    model_path = files[0]
                    if len(files) > 1:
                        logger.warning(
                            f"Multiple model weights found in {dit_weight}, using {model_path}"
                        )
                    bare_model = False
                else:
                    raise ValueError(
                        f"Invalid model path: {dit_weight} with unrecognized weight format: "
                        f"{list(map(str, files))}. When given a directory as --dit-weight, only "
                        f"`pytorch_model_*.pt`(provided by HunyuanDiT official) and "
                        f"`*_model_states.pt`(saved by deepspeed) can be parsed. If you want to load a "
                        f"specific weight file, please provide the full path to the file."
                    )
            elif dit_weight.is_file():
                model_path = dit_weight
                bare_model = "unknown"
            else:
                raise ValueError(f"Invalid model path: {dit_weight}")

        if not model_path.exists():
            raise ValueError(f"model_path not exists: {model_path}")
        logger.info(f"Loading torch model {model_path}...")
        state_dict = torch.load(model_path, map_location=lambda storage, loc: storage)

        if bare_model == "unknown" and ("ema" in state_dict or "module" in state_dict):
            bare_model = False
        if bare_model is False:
            if load_key in state_dict:
                state_dict = state_dict[load_key]
            else:
                raise KeyError(
                    f"Missing key: `{load_key}` in the checkpoint: {model_path}. The keys in the checkpoint "
                    f"are: {list(state_dict.keys())}."
                )
        model.load_state_dict(state_dict, strict=True)
        return model

    @staticmethod
    def parse_size(size):
        if isinstance(size, int):
            size = [size]
        if not isinstance(size, (list, tuple)):
            raise ValueError(f"Size must be an integer or (height, width), got {size}.")
        if len(size) == 1:
            size = [size[0], size[0]]
        if len(size) != 2:
            raise ValueError(f"Size must be an integer or (height, width), got {size}.")
        return size


class HunyuanVideoSampler(Inference):
    def __init__(
        self,
        args,
        vae,
        vae_kwargs,
        text_encoder,
        model,
        text_encoder_2=None,
        pipeline=None,
        use_cpu_offload=False,
        device=0,
        logger=None,
        parallel_args=None
    ):
        super().__init__(
            args,
            vae,
            vae_kwargs,
            text_encoder,
            model,
            text_encoder_2=text_encoder_2,
            pipeline=pipeline,
            use_cpu_offload=use_cpu_offload,
            device=device,
            logger=logger,
            parallel_args=parallel_args
        )

        self.pipeline = self.load_diffusion_pipeline(
            args=args,
            vae=self.vae,
            text_encoder=self.text_encoder,
            text_encoder_2=self.text_encoder_2,
            model=self.model,
            device=self.device,
        )

        if args.i2v_mode:
            self.default_negative_prompt = NEGATIVE_PROMPT_I2V
            if args.use_lora:
                self.pipeline = load_lora_for_pipeline(
                    self.pipeline, args.lora_path, LORA_PREFIX_TRANSFORMER="Hunyuan_video_I2V_lora", alpha=args.lora_scale,
                    device=self.device)
                logger.info(f"load lora {args.lora_path} into pipeline, lora scale is {args.lora_scale}.")
        else:
            self.default_negative_prompt = NEGATIVE_PROMPT

        if self.parallel_args['ulysses_degree'] > 1 or self.parallel_args['ring_degree'] > 1:
            parallelize_transformer(self.pipeline)

    def load_diffusion_pipeline(
        self,
        args,
        vae,
        text_encoder,
        text_encoder_2,
        model,
        scheduler=None,
        device=None,
        progress_bar_config=None,
    ):
        """Load the denoising scheduler for inference."""
        if scheduler is None:
            if args.denoise_type == "flow":
                scheduler = FlowMatchDiscreteScheduler(
                    shift=args.flow_shift,
                    reverse=args.flow_reverse,
                    solver=args.flow_solver,
                )
            else:
                raise ValueError(f"Invalid denoise type {args.denoise_type}")

        pipeline = HunyuanVideoPipeline(
            vae=vae,
            text_encoder=text_encoder,
            text_encoder_2=text_encoder_2,
            transformer=model,
            scheduler=scheduler,
            progress_bar_config=progress_bar_config,
            args=args,
        )
        if self.use_cpu_offload:
            pipeline.enable_sequential_cpu_offload()
        else:
            pipeline = pipeline.to(device)

        return pipeline

    def get_rotary_pos_embed(self, video_length, height, width):
        target_ndim = 3
        ndim = 5 - 2
        # 884
        if "884" in self.args.vae:
            latents_size = [(video_length - 1) // 4 + 1, height // 8, width // 8]
        elif "888" in self.args.vae:
            latents_size = [(video_length - 1) // 8 + 1, height // 8, width // 8]
        else:
            latents_size = [video_length, height // 8, width // 8]

        if isinstance(self.model.patch_size, int):
            assert all(s % self.model.patch_size == 0 for s in latents_size), (
                f"Latent size(last {ndim} dimensions) should be divisible by patch size({self.model.patch_size}), "
                f"but got {latents_size}."
            )
            rope_sizes = [s // self.model.patch_size for s in latents_size]
        elif isinstance(self.model.patch_size, list):
            assert all(
                s % self.model.patch_size[idx] == 0
                for idx, s in enumerate(latents_size)
            ), (
                f"Latent size(last {ndim} dimensions) should be divisible by patch size({self.model.patch_size}), "
                f"but got {latents_size}."
            )
            rope_sizes = [
                s // self.model.patch_size[idx] for idx, s in enumerate(latents_size)
            ]

        if len(rope_sizes) != target_ndim:
            rope_sizes = [1] * (target_ndim - len(rope_sizes)) + rope_sizes  # time axis
        head_dim = self.model.hidden_size // self.model.heads_num
        rope_dim_list = self.model.rope_dim_list
        if rope_dim_list is None:
            rope_dim_list = [head_dim // target_ndim for _ in range(target_ndim)]
        assert (
            sum(rope_dim_list) == head_dim
        ), "sum(rope_dim_list) should equal to head_dim of attention layer"
        freqs_cos, freqs_sin = get_nd_rotary_pos_embed(
            rope_dim_list,
            rope_sizes,
            theta=self.args.rope_theta,
            use_real=True,
            theta_rescale_factor=1,
        )
        return freqs_cos, freqs_sin

    @torch.no_grad()
    def predict(
        self,
        prompt,
        height=192,
        width=336,
        video_length=129,
        seed=None,
        negative_prompt=None,
        infer_steps=50,
        guidance_scale=6.0,
        flow_shift=5.0,
        embedded_guidance_scale=None,
        batch_size=1,
        num_videos_per_prompt=1,
        i2v_mode=False,
        i2v_resolution="720p",
        i2v_image_path=None,
        i2v_condition_type=None,
        i2v_stability=True,
        ulysses_degree=1,
        ring_degree=1,
        xdit_adaptive_size=True,
        **kwargs,
    ):
        """
        Predict the image/video from the given text.

        Args:
            prompt (str or List[str]): The input text.
            kwargs:
                height (int): The height of the output video. Default is 192.
                width (int): The width of the output video. Default is 336.
                video_length (int): The frame number of the output video. Default is 129.
                seed (int or List[str]): The random seed for the generation. Default is a random integer.
                negative_prompt (str or List[str]): The negative text prompt. Default is an empty string.
                infer_steps (int): The number of inference steps. Default is 50.
                guidance_scale (float): The guidance scale for the generation. Default is 6.0.
                flow_shift (float): The flow shift for the generation. Default is 5.0.
                embedded_guidance_scale (float): embedded guidance scale for the generation. Default is None.
                batch_size (int): batch size for inference. Default is 1.
                num_images_per_prompt (int): The number of images per prompt. Default is 1.
                i2v_mode (bool): Whether to open i2v mode. Default is False.
                i2v_resolution (str): Resolution for i2v inference. Default is 720p.
                i2v_image_path (str): Image path for i2v inference. Default is None.
                ulysses_degree (int): Ulysses degree for xdit parallel args. Default is 1.
                ring_degree (int): ring degree for xdit parallel args. Default is 1.
                xdit_adaptive_size (bool): Make the generated video has no black padding. Default is True.
        """
        out_dict = dict()

        # ========================================================================
        # Arguments: seed
        # ========================================================================
        if isinstance(seed, torch.Tensor):
            seed = seed.tolist()
        if seed is None:
            seeds = [
                random.randint(0, 1_000_000)
                for _ in range(batch_size * num_videos_per_prompt)
            ]
        elif isinstance(seed, int):
            seeds = [
                seed + i
                for _ in range(batch_size)
                for i in range(num_videos_per_prompt)
            ]
        elif isinstance(seed, (list, tuple)):
            if len(seed) == batch_size:
                seeds = [
                    int(seed[i]) + j
                    for i in range(batch_size)
                    for j in range(num_videos_per_prompt)
                ]
            elif len(seed) == batch_size * num_videos_per_prompt:
                seeds = [int(s) for s in seed]
            else:
                raise ValueError(
                    f"Length of seed must be equal to number of prompt(batch_size) or "
                    f"batch_size * num_videos_per_prompt ({batch_size} * {num_videos_per_prompt}), got {seed}."
                )
        else:
            raise ValueError(
                f"Seed must be an integer, a list of integers, or None, got {seed}."
            )
        generator = [torch.Generator(self.device).manual_seed(seed) for seed in seeds]
        out_dict["seeds"] = seeds

        # ========================================================================
        # Arguments: target_width, target_height, target_video_length
        # ========================================================================
        if width <= 0 or height <= 0 or video_length <= 0:
            raise ValueError(
                f"`height` and `width` and `video_length` must be positive integers, got height={height}, width={width}, video_length={video_length}"
            )
        if (video_length - 1) % 4 != 0:
            raise ValueError(
                f"`video_length-1` must be a multiple of 4, got {video_length}"
            )

        logger.info(
            f"Input (height, width, video_length) = ({height}, {width}, {video_length})"
        )

        target_height = align_to(height, 16)
        target_width = align_to(width, 16)
        target_video_length = video_length

        out_dict["size"] = (target_height, target_width, target_video_length)

        # ========================================================================
        # Arguments: prompt, new_prompt, negative_prompt
        # ========================================================================
        if not isinstance(prompt, str):
            raise TypeError(f"`prompt` must be a string, but got {type(prompt)}")
        prompt = [prompt.strip()]

        # negative prompt
        if negative_prompt is None or negative_prompt == "":
            negative_prompt = self.default_negative_prompt
        if guidance_scale == 1.0:
            negative_prompt = ""
        if not isinstance(negative_prompt, str):
            raise TypeError(
                f"`negative_prompt` must be a string, but got {type(negative_prompt)}"
            )
        negative_prompt = [negative_prompt.strip()]

        # ========================================================================
        # Scheduler
        # ========================================================================
        scheduler = FlowMatchDiscreteScheduler(
            shift=flow_shift,
            reverse=self.args.flow_reverse,
            solver=self.args.flow_solver
        )
        self.pipeline.scheduler = scheduler

        # ---------------------------------
        # Reference condition
        # ---------------------------------
        img_latents = None
        semantic_images = None
        if i2v_mode:
            if i2v_resolution == "720p":
                bucket_hw_base_size = 960
            elif i2v_resolution == "540p":
                bucket_hw_base_size = 720
            elif i2v_resolution == "360p":
                bucket_hw_base_size = 480
            else:
                raise ValueError(f"i2v_resolution: {i2v_resolution} must be in [360p, 540p, 720p]")

            semantic_images = [Image.open(i2v_image_path).convert('RGB')]
            origin_size = semantic_images[0].size

            crop_size_list = generate_crop_size_list(bucket_hw_base_size, 32)
            aspect_ratios = np.array([round(float(h)/float(w), 5) for h, w in crop_size_list])
            closest_size, closest_ratio = get_closest_ratio(origin_size[1], origin_size[0], aspect_ratios, crop_size_list)

            if ulysses_degree != 1 or ring_degree != 1:
                closest_size = (height, width)
                resize_param = min(closest_size)
                center_crop_param = closest_size

                # When calculating the scaling ratio, choose the larger ratio (max(scale_w, scale_h)) to ensure that at
                # least one dimension of the image is greater than or equal to the target size.
                if xdit_adaptive_size:
                    original_h, original_w = origin_size[1], origin_size[0]
                    target_h, target_w = height, width

                    scale_w = target_w / original_w
                    scale_h = target_h / original_h
                    scale = max(scale_w, scale_h)

                    new_w = int(original_w * scale)
                    new_h = int(original_h * scale)
                    resize_param = (new_h, new_w)
                    center_crop_param = (target_h, target_w)
            else:
                resize_param = min(closest_size)
                center_crop_param = closest_size

            ref_image_transform = transforms.Compose([
                transforms.Resize(resize_param),
                transforms.CenterCrop(center_crop_param),
                transforms.ToTensor(),
                transforms.Normalize([0.5], [0.5])
            ])

            semantic_image_pixel_values = [ref_image_transform(semantic_image) for semantic_image in semantic_images]
            semantic_image_pixel_values = torch.cat(semantic_image_pixel_values).unsqueeze(0).unsqueeze(2).to(self.device)

            with torch.autocast(device_type="cuda", dtype=torch.float16, enabled=True):
                img_latents = self.pipeline.vae.encode(semantic_image_pixel_values).latent_dist.mode() # B, C, F, H, W
                img_latents.mul_(self.pipeline.vae.config.scaling_factor)

            target_height, target_width = closest_size

        # ========================================================================
        # Build Rope freqs
        # ========================================================================
        freqs_cos, freqs_sin = self.get_rotary_pos_embed(
            target_video_length, target_height, target_width
        )
        n_tokens = freqs_cos.shape[0]

        # ========================================================================
        # Print infer args
        # ========================================================================
        debug_str = f"""
                        height: {target_height}
                         width: {target_width}
                  video_length: {target_video_length}
                        prompt: {prompt}
                    neg_prompt: {negative_prompt}
                          seed: {seed}
                   infer_steps: {infer_steps}
         num_videos_per_prompt: {num_videos_per_prompt}
                guidance_scale: {guidance_scale}
                      n_tokens: {n_tokens}
                    flow_shift: {flow_shift}
       embedded_guidance_scale: {embedded_guidance_scale}
                 i2v_stability: {i2v_stability}"""
        if ulysses_degree != 1 or ring_degree != 1:
            debug_str += f"""
                ulysses_degree: {ulysses_degree}
                   ring_degree: {ring_degree}
            xdit_adaptive_size: {xdit_adaptive_size}"""
        logger.debug(debug_str)

        # ========================================================================
        # Pipeline inference
        # ========================================================================
        start_time = time.time()
        samples = self.pipeline(
            prompt=prompt,
            height=target_height,
            width=target_width,
            video_length=target_video_length,
            num_inference_steps=infer_steps,
            guidance_scale=guidance_scale,
            negative_prompt=negative_prompt,
            num_videos_per_prompt=num_videos_per_prompt,
            generator=generator,
            output_type="pil",
            freqs_cis=(freqs_cos, freqs_sin),
            n_tokens=n_tokens,
            embedded_guidance_scale=embedded_guidance_scale,
            data_type="video" if target_video_length > 1 else "image",
            is_progress_bar=True,
            vae_ver=self.args.vae,
            enable_tiling=self.args.vae_tiling,
            i2v_mode=i2v_mode,
            i2v_condition_type=i2v_condition_type,
            i2v_stability=i2v_stability,
            img_latents=img_latents,
            semantic_images=semantic_images,
        )[0]
        out_dict["samples"] = samples
        out_dict["prompts"] = prompt

        gen_time = time.time() - start_time
        logger.info(f"Success, time: {gen_time}")

        return out_dict