dataset.py 9.65 KB
Newer Older
mashun1's avatar
hyi2v  
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
from typing import Tuple, List
from decord import VideoReader
import urllib
import io
import os
import csv
import numpy as np
import torch
from torch.utils.data import Dataset, IterableDataset
import torchvision.transforms as transforms
from torchvision.transforms.functional import crop
from pathlib import Path
import sys
import json


def split_video_urls(meta_files: str, global_rank: int, world_size: int):
    meta_paths = []
    meta_paths.extend([line.strip() for line in open(meta_files, 'r').readlines()])
    num_videos = len(meta_paths)
    num_videos_per_rank = num_videos // world_size
    remainder = num_videos % world_size

    # Calculate start and end indices
    start = num_videos_per_rank * global_rank + min(global_rank, remainder)
    end = start + num_videos_per_rank + (1 if global_rank < remainder else 0)

    return start, end, meta_paths[start:end]

class MultiBucketDataset(IterableDataset):
    def __init__(self, source: Dataset, batch_size: int, max_buf = 64):
        super().__init__()
        self.source = source
        self.batch_size = batch_size
        self.buffer = {}   
        self.max_buf = max_buf
        self.size = 0

    @staticmethod
    def collate_fn(samples):
        pixel_values = torch.stack([sample["pixel_values"] for sample in samples]).contiguous()
        videoid = [sample["videoid"] for sample in samples]
        valid = [sample["valid"] for sample in samples]
        batch = {"pixel_values": pixel_values, "videoid": videoid, "valid": valid}
        return batch

    def __iter__(self):
        # split dataset
        worker_info = torch.utils.data.get_worker_info()
        if worker_info is None:
            iter_start = 0
            iter_end = len(self.source)
        else:
            worker_id = int(worker_info.id)
            per_worker = len(self.source) // int(worker_info.num_workers)
            per_worker += int(worker_id < len(self.source) % int(worker_info.num_workers))
            if worker_id >= len(self.source) % int(worker_info.num_workers):
                iter_start = worker_id * per_worker + len(self.source) % int(worker_info.num_workers)  
            else:          
                iter_start = worker_id * per_worker
            iter_end = iter_start + per_worker
       
       # bucketing
        for i in range(iter_start, iter_end):
            sample = self.source[i]
            if sample["valid"] is False:
                continue
            T, C, H, W = sample["pixel_values"].shape
            if (T, H, W) not in self.buffer:
                self.buffer[(T, H, W)] = []
            self.buffer[(T, H, W)].append(sample)
            self.size += 1
            if len(self.buffer[(T, H, W)]) == self.batch_size:
                yield self.buffer[(T, H, W)]
                self.size -= self.batch_size
                self.buffer[(T, H, W)] = []
            if self.size > self.max_buf and (len(self.buffer[(T, H, W)]) > 0):
                self.size -= len(self.buffer[(T, H, W)])
                yield self.buffer[(T, H, W)]
                self.buffer[(T, H, W)] = []
        # yield the remaining batch
        for bucket, samples in self.buffer.items():
            if len(samples) > 0:
                yield samples

class VideoDataset(Dataset):
    def __init__(
        self,
        meta_files: List[str],
        latent_cache_dir: str,
        sample_size: Tuple[int, int],
        sample_n_frames: int,
        is_center_crop: bool = True,
        enable_multi_aspect_ratio: bool = False,
        vae_time_compression_ratio: int = 4,
        use_stride: bool = False,
    ):
        if not Path(latent_cache_dir).exists():
            Path(latent_cache_dir).mkdir(parents=True, exist_ok=True)
        self.latent_cache_dir = latent_cache_dir

        self.sample_n_frames = sample_n_frames
        self.sample_size = tuple(sample_size)
        self.is_center_crop = is_center_crop
        self.vae_time_compression_ratio = vae_time_compression_ratio
        self.enable_multi_aspect_ratio = enable_multi_aspect_ratio
        self.dataset = meta_files
        self.length = len(self.dataset)
        self.use_stride = use_stride

        # multi-aspect-ratio buckets
        if enable_multi_aspect_ratio:
            assert self.sample_size[0] == self.sample_size[1]
            if self.sample_size[0] < 540:
                self.buckets = self.generate_crop_size_list(base_size=self.sample_size[0])
            else:
                self.buckets = self.generate_crop_size_list(base_size=self.sample_size[0], patch_size=32)
            self.aspect_ratios = np.array([float(w) / float(h) for w, h in self.buckets])
            print(f"Multi-aspect-ratio bucket num: {len(self.buckets)}")
        # image preprocess
        if not enable_multi_aspect_ratio:
            self.train_crop = transforms.CenterCrop(self.sample_size) if self.is_center_crop else transforms.RandomCrop(self.sample_size)

    def request_ceph_data(self, path):
        try:
            video_reader = VideoReader(path)
        except Exception as e:
            print(f"Error: {e}")
            raise
        return video_reader

    def preprocess_url(self, data_json_path):

        with open(data_json_path, "r") as f:
            data_dict = json.load(f)

        video_path = data_dict['video_path']
        video_id = video_path.split('/')[-1].split('.')[0]
        prompt = data_dict['raw_caption']["long caption"]

        item = {"video_path": video_path, "videoid": video_id, "prompt": prompt}
        return item

    def get_item(self, idx):
        # Create Video Reader
        data_json_path = self.dataset[idx]
        video_item = self.preprocess_url(data_json_path)

        # Skip if exists
        latent_save_path = Path(self.latent_cache_dir) / f"{video_item['videoid']}.npy"
        if latent_save_path.exists():
            return None, None, False

        video_reader = self.request_ceph_data(video_item["video_path"])

        fps = video_reader.get_avg_fps()

        stride = 1
        if self.use_stride:
            if int(fps) >= 50:
                stride = 2
            else:
                stride = 1
        else:
            stride = 1
            
        video_length = len(video_reader)
        if video_length < self.sample_n_frames*stride:
            sample_n_frames = video_length - (video_length - 1) % (self.vae_time_compression_ratio*stride)  # 4n+1/8n+1
        else:
            sample_n_frames = self.sample_n_frames*stride  

        start_idx = 0
        batch_index = list(range(start_idx, start_idx + sample_n_frames, stride))

        if len(batch_index) == 0:
            print("get video len=0, skip")
            return None, None, None, False
        # Read frames
        try:
            video_images = video_reader.get_batch(batch_index).asnumpy()
        except Exception as e:
            print(f'Error: {e}, video_path: {video_item["video_path"]}')
            raise
        pixel_values = torch.from_numpy(video_images).permute(0, 3, 1, 2).contiguous()
        del video_reader

        return pixel_values, video_item["videoid"], video_item["video_path"], video_item["prompt"], True

    def preprocess_train(self, frames):
        height, width = frames.shape[-2:]
        # Resize & Crop
        if self.enable_multi_aspect_ratio:
            bw, bh = self.get_closest_ratio(width=width, height=height, ratios=self.aspect_ratios, buckets=self.buckets)
            sample_size = bh, bw
            target_size = self.get_target_size(frames, sample_size)
            train_crop = transforms.CenterCrop(sample_size) if self.is_center_crop else transforms.RandomCrop(sample_size)
        else:
            sample_size = self.sample_size
            target_size = self.get_target_size(frames, sample_size)
            train_crop = self.train_crop

        frames = transforms.Resize(target_size, interpolation=transforms.InterpolationMode.BILINEAR, antialias=True)(frames)
        if self.is_center_crop:
            y1 = max(0, int(round((height - sample_size[0]) / 2.0)))
            x1 = max(0, int(round((width - sample_size[1]) / 2.0)))
            frames = train_crop(frames)
        else:
            y1, x1, h, w = train_crop.get_params(frames, sample_size)
            frames = crop(frames, y1, x1, h, w)
        return frames

    @staticmethod
    def get_closest_ratio(width: float, height: float, ratios: list, buckets: list):
        aspect_ratio = float(width) / float(height)
        closest_ratio_id = np.abs(ratios - aspect_ratio).argmin()
        return buckets[closest_ratio_id]

    @staticmethod
    def generate_crop_size_list(base_size=256, patch_size=16, max_ratio=4.0):
        num_patches = round((base_size / patch_size) ** 2)
        assert max_ratio >= 1.
        crop_size_list = []
        wp, hp = num_patches, 1
        while wp > 0:
            if max(wp, hp) / min(wp, hp) <= max_ratio:
                crop_size_list.append((wp * patch_size, hp * patch_size))
            if (hp + 1) * wp <= num_patches:
                hp += 1
            else:
                wp -= 1
        return crop_size_list

    def get_target_size(self, frames, target_size):
        T, C, H, W = frames.shape
        th, tw = target_size
        r = max(th / H, tw / W)
        target_size = int(H * r), int(W * r)
        return target_size

    def __len__(self):
        return self.length

    def __getitem__(self, idx):
        try:
            pixel, videoid, video_path, prompt, valid = self.get_item(idx)
            if pixel is not None and valid:
                pixel = self.preprocess_train(pixel)
            sample = dict(pixel_values=pixel, videoid=videoid, video_path=video_path, prompt=prompt,valid=valid)
            return sample
        except Exception as e:
            print(e)
            return dict(pixel_values=None, videoid=None, video_path=None, prompt=None, valid=False)