config.py 21.6 KB
Newer Older
mashun1's avatar
hyi2v  
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
import argparse
from .constants import *
import re
from .modules.models import HUNYUAN_VIDEO_CONFIG


def parse_args(mode="eval", namespace=None):
    parser = argparse.ArgumentParser(description="HunyuanVideo inference/lora training script")

    parser = add_network_args(parser)
    parser = add_extra_models_args(parser)
    parser = add_denoise_schedule_args(parser)
    parser = add_i2v_args(parser)
    parser = add_lora_args(parser)
    parser = add_inference_args(parser)
    parser = add_parallel_args(parser)
    if mode == "train":
        parser = add_training_args(parser)
        parser = add_optimizer_args(parser)
        parser = add_deepspeed_args(parser)
        parser = add_data_args(parser)
        parser = add_train_denoise_schedule_args(parser)

    args = parser.parse_args(namespace=namespace)
    args = sanity_check_args(args)

    return args

def add_train_denoise_schedule_args(parser: argparse.ArgumentParser):
    group = parser.add_argument_group(title="Denoise schedule")

    group.add_argument("--flow-path-type", type=str, default="linear", choices=FLOW_PATH_TYPE,
                       help="Path type for flow matching schedulers.")
    group.add_argument("--flow-predict-type", type=str, default="velocity", choices=FLOW_PREDICT_TYPE,
                       help="Prediction type for flow matching schedulers.")
    group.add_argument("--flow-loss-weight", type=str, default=None, choices=FLOW_LOSS_WEIGHT,
                       help="Loss weight type for flow matching schedulers.")
    group.add_argument("--flow-train-eps", type=float, default=None,
                       help="Small epsilon for avoiding instability during training.")
    group.add_argument("--flow-sample-eps", type=float, default=None,
                       help="Small epsilon for avoiding instability during sampling.")
    group.add_argument("--flow-snr-type", type=str, default="lognorm", choices=FLOW_SNR_TYPE,
                       help="Type of SNR to use for flow matching schedulers.")

    return parser

def add_deepspeed_args(parser: argparse.ArgumentParser):
    group = parser.add_argument_group(title="DeepSpeed")

    group.add_argument("--local_rank", type=int, default=-1, help="Local rank for distributed training.")
    group.add_argument("--zero-stage", type=int, default=0, choices=[0, 1, 2, 3],
                       help="DeepSpeed ZeRO stage. 0: off, 1: offload optimizer, 2: offload parameters, "
                            "3: offload optimizer and parameters.")
    return parser

def add_data_args(parser: argparse.ArgumentParser):
    group = parser.add_argument_group(title="Data")

    group.add_argument("--data-type", type=str, default="image", choices=DATA_TYPE, help="Type of the dataset.")
    group.add_argument("--data-jsons-path", type=str, default=None, help="Dataset path for training.")
    group.add_argument("--sample-n-frames", type=int, default=65,
                       help="How many frames to sample from a video. if using 3d vae, the number should be 4n+1")
    group.add_argument("--sample-stride", type=int, default=1,
                       help="How many frames to skip when sampling from a video.")
    group.add_argument("--num-workers", type=int, default=4, help="Number of workers for data loading.")
    group.add_argument("--prefetch-factor", type=int, default=2, help="Prefetch factor for data loading.")
    group.add_argument("--same-data-batch", action="store_true", help="Use same data type for all rank in a batch for training.")
    group.add_argument("--uncond-p", type=float, default=0.1,
                       help="Probability of randomly dropping video description.")
    group.add_argument("--sematic-cond-drop-p", type=float, default=0.1,
                       help="Probability of randomly dropping img condition description.")

    return parser

def add_training_args(parser: argparse.ArgumentParser):
    group = parser.add_argument_group(title="Training")

    group.add_argument("--task-flag", type=str, required=True,
                       help="Task flag for training/inference. It is used to determine the experiment directory.")
    group.add_argument("--output-dir", type=str, required=True, help="Directory to save logs and models")
    group.add_argument("--sample-dir", type=str, default=None, required=False, help="Directory to save samples")
    group.add_argument("--micro-batch-size", type=int, default=1, nargs='*',
                       help="Batch size per model instance (local batch size).")
    group.add_argument("--video-micro-batch-size", type=int, default=None, nargs='*',
                       help="Batch size per model instance (local batch size).")
    group.add_argument("--global-batch-size", type=int, default=None, nargs='*',
                       help="Global batch size (across all model instances). "
                            "global-batch-size = micro-batch-size * world-size * gradient-accumulation-steps")
    group.add_argument("--gradient-accumulation-steps", type=int, default=1,
                       help="Number of steps to accumulate gradients over before performing an update.")
    group.add_argument("--global-seed", type=int, default=42, help="Global seed for reproducibility.")

    group.add_argument("--resume", type=str, default=None,
                       help="Path to the checkpoint to resume training. It can be an experiment index to resume from "
                            "the latest checkpoint in the output directory.")
    group.add_argument("--init-from", type=str, default=None,
                       help="Path to the checkpoint to load from init ckpt for training. ")
    group.add_argument("--training-parts", type=str, default=None, help="Training a subset of the model parameters.")
    group.add_argument("--init-save", action="store_true", help="Save the initial model before training.")
    group.set_defaults(final_save=True)
    group.add_argument("--final-save", action="store_true", help="Save the final model after training.")
    group.add_argument("--no-final-save", dest="final_save", action="store_false", help="Do not save the final model.")

    group.add_argument("--epochs", type=int, default=100000, help="Number of epochs to train.")
    group.add_argument("--max-training-steps", type=int, default=10_000_000, help="Maximum number of training steps.")
    group.add_argument("--ckpt-every", type=int, default=5000, help="Save checkpoint every N steps.")

    group.add_argument("--rope-theta-rescale-factor", type=float, default=1.0, nargs='+',
                       help="Rope interpolation factor.")
    group.add_argument("--rope-interpolation-factor", type=float, default=1.0, nargs='+',
                       help="Rope interpolation factor.")

    group.add_argument("--log-every", type=int, default=10, help="Log every N update steps.")
    group.add_argument("--tensorboard", action="store_true", help="Enable TensorBoard logging.")
    group.add_argument("--profile", action="store_true", help="Enable PyTorch profiler.")
    return parser

def add_optimizer_args(parser: argparse.ArgumentParser):
    group = parser.add_argument_group(title="Optimizer")

    # Learning rate
    group.add_argument("--lr", type=float, default=1e-4,
                       help="Basic learning rate, varies depending on learning rate schedule and warmup.")
    group.add_argument("--warmup-min-lr", type=float, default=1e-6, help="Minimum learning rate for warmup.")
    group.add_argument("--warmup-num-steps", type=int, default=0, help="Number of warmup steps for learning rate.")

    # Optimizer
    group.add_argument("--adam-beta1", type=float, default=0.9,
                       help="[AdamW] First coefficient for computing running averages of gradient.")
    group.add_argument("--adam-beta2", type=float, default=0.999,
                       help="[AdamW] Second coefficient for computing running averages of gradient square.")
    group.add_argument("--adam-eps", type=float, default=1e-8,
                       help="[AdamW] Term added to the denominator to improve numerical stability.")
    group.add_argument("--weight-decay", type=float, default=0,
                       help="Weight decay coefficient for L2 regularization.")
    return parser

def add_train_args(parser: argparse.ArgumentParser):
    group = parser.add_argument_group(title="HunyuanVideo train args")


    return parser

def add_network_args(parser: argparse.ArgumentParser):
    group = parser.add_argument_group(title="HunyuanVideo network args")

    # Main model
    group.add_argument(
        "--model",
        type=str,
        choices=list(HUNYUAN_VIDEO_CONFIG.keys()),
        default="HYVideo-T/2-cfgdistill",
    )
    group.add_argument(
        "--latent-channels",
        type=str,
        default=16,
        help="Number of latent channels of DiT. If None, it will be determined by `vae`. If provided, "
        "it still needs to match the latent channels of the VAE model.",
    )
    group.add_argument(
        "--precision",
        type=str,
        default="bf16",
        choices=PRECISIONS,
        help="Precision mode. Options: fp32, fp16, bf16. Applied to the backbone model and optimizer.",
    )

    # RoPE
    group.add_argument(
        "--rope-theta", type=int, default=256, help="Theta used in RoPE."
    )

    group.add_argument("--gradient-checkpoint", action="store_true",
                       help="Enable gradient checkpointing to reduce memory usage.")

    group.add_argument("--gradient-checkpoint-layers", type=int, default=-1,
                       help="Number of layers to checkpoint. -1 for all layers. `n` for the first n layers.")

    return parser


def add_extra_models_args(parser: argparse.ArgumentParser):
    group = parser.add_argument_group(
        title="Extra models args, including vae, text encoders and tokenizers)"
    )

    # - VAE
    group.add_argument(
        "--vae",
        type=str,
        default="884-16c-hy",
        choices=list(VAE_PATH),
        help="Name of the VAE model.",
    )
    group.add_argument(
        "--vae-precision",
        type=str,
        default="fp16",
        choices=PRECISIONS,
        help="Precision mode for the VAE model.",
    )
    group.add_argument(
        "--vae-tiling",
        action="store_true",
        help="Enable tiling for the VAE model to save GPU memory.",
    )
    group.set_defaults(vae_tiling=True)

    group.add_argument(
        "--text-encoder",
        type=str,
        default="llm-i2v",
        choices=list(TEXT_ENCODER_PATH),
        help="Name of the text encoder model.",
    )
    group.add_argument(
        "--text-encoder-precision",
        type=str,
        default="fp16",
        choices=PRECISIONS,
        help="Precision mode for the text encoder model.",
    )
    group.add_argument(
        "--text-states-dim",
        type=int,
        default=4096,
        help="Dimension of the text encoder hidden states.",
    )
    group.add_argument(
        "--text-len", type=int, default=256, help="Maximum length of the text input."
    )
    group.add_argument(
        "--tokenizer",
        type=str,
        default="llm-i2v",
        choices=list(TOKENIZER_PATH),
        help="Name of the tokenizer model.",
    )
    group.add_argument(
        "--prompt-template",
        type=str,
        default="dit-llm-encode-i2v",
        choices=PROMPT_TEMPLATE,
        help="Image prompt template for the decoder-only text encoder model.",
    )
    group.add_argument(
        "--prompt-template-video",
        type=str,
        default="dit-llm-encode-video-i2v",
        choices=PROMPT_TEMPLATE,
        help="Video prompt template for the decoder-only text encoder model.",
    )
    group.add_argument(
        "--hidden-state-skip-layer",
        type=int,
        default=2,
        help="Skip layer for hidden states.",
    )
    group.add_argument(
        "--apply-final-norm",
        action="store_true",
        help="Apply final normalization to the used text encoder hidden states.",
    )

    # - CLIP
    group.add_argument(
        "--text-encoder-2",
        type=str,
        default="clipL",
        choices=list(TEXT_ENCODER_PATH),
        help="Name of the second text encoder model.",
    )
    group.add_argument(
        "--text-encoder-precision-2",
        type=str,
        default="fp16",
        choices=PRECISIONS,
        help="Precision mode for the second text encoder model.",
    )
    group.add_argument(
        "--text-states-dim-2",
        type=int,
        default=768,
        help="Dimension of the second text encoder hidden states.",
    )
    group.add_argument(
        "--tokenizer-2",
        type=str,
        default="clipL",
        choices=list(TOKENIZER_PATH),
        help="Name of the second tokenizer model.",
    )
    group.add_argument(
        "--text-len-2",
        type=int,
        default=77,
        help="Maximum length of the second text input.",
    )

    return parser


def add_denoise_schedule_args(parser: argparse.ArgumentParser):
    group = parser.add_argument_group(title="Denoise schedule args")

    group.add_argument(
        "--denoise-type",
        type=str,
        default="flow",
        help="Denoise type for noised inputs.",
    )

    # Flow Matching
    group.add_argument(
        "--flow-shift",
        type=float,
        default=17.0,
        help="Shift factor for flow matching schedulers.",
    )
    group.add_argument(
        "--flow-reverse",
        action="store_true",
        help="If reverse, learning/sampling from t=1 -> t=0.",
    )
    group.add_argument(
        "--flow-solver",
        type=str,
        default="euler",
        help="Solver for flow matching.",
    )
    group.add_argument(
        "--use-linear-quadratic-schedule",
        action="store_true",
        help="Use linear quadratic schedule for flow matching."
        "Following MovieGen (https://ai.meta.com/static-resource/movie-gen-research-paper)",
    )
    group.add_argument(
        "--linear-schedule-end",
        type=int,
        default=25,
        help="End step for linear quadratic schedule for flow matching.",
    )

    return parser


def add_inference_args(parser: argparse.ArgumentParser):
    group = parser.add_argument_group(title="Inference args")

    # ======================== Model loads ========================
    group.add_argument(
        "--model-base",
        type=str,
        default="ckpts",
        help="Root path of all the models, including t2v models and extra models.",
    )
    group.add_argument(
        "--dit-weight",
        type=str,
        default="ckpts/hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states.pt",
        help="Path to the HunyuanVideo model. If None, search the model in the args.model_root."
        "1. If it is a file, load the model directly."
        "2. If it is a directory, search the model in the directory. Support two types of models: "
        "1) named `pytorch_model_*.pt`"
        "2) named `*_model_states.pt`, where * can be `mp_rank_00`.",
    )
    group.add_argument(
        "--i2v-dit-weight",
        type=str,
        default="ckpts/hunyuan-video-i2v-720p/transformers/mp_rank_00_model_states.pt",
        help="Path to the HunyuanVideo model. If None, search the model in the args.model_root."
        "1. If it is a file, load the model directly."
        "2. If it is a directory, search the model in the directory. Support two types of models: "
        "1) named `pytorch_model_*.pt`"
        "2) named `*_model_states.pt`, where * can be `mp_rank_00`.",
    )
    group.add_argument(
        "--model-resolution",
        type=str,
        default="540p",
        choices=["540p", "720p"],
        help="Root path of all the models, including t2v models and extra models.",
    )
    group.add_argument(
        "--load-key",
        type=str,
        default="module",
        help="Key to load the model states. 'module' for the main model, 'ema' for the EMA model.",
    )
    group.add_argument(
        "--use-cpu-offload",
        action="store_true",
        help="Use CPU offload for the model load.",
    )

    # ======================== Inference general setting ========================
    group.add_argument(
        "--batch-size",
        type=int,
        default=1,
        help="Batch size for inference and evaluation.",
    )
    group.add_argument(
        "--infer-steps",
        type=int,
        default=50,
        help="Number of denoising steps for inference.",
    )
    group.add_argument(
        "--disable-autocast",
        action="store_true",
        help="Disable autocast for denoising loop and vae decoding in pipeline sampling.",
    )
    group.add_argument(
        "--save-path",
        type=str,
        default="./results",
        help="Path to save the generated samples.",
    )
    group.add_argument(
        "--save-path-suffix",
        type=str,
        default="",
        help="Suffix for the directory of saved samples.",
    )
    group.add_argument(
        "--name-suffix",
        type=str,
        default="",
        help="Suffix for the names of saved samples.",
    )
    group.add_argument(
        "--num-videos",
        type=int,
        default=1,
        help="Number of videos to generate for each prompt.",
    )
    # ---sample size---
    group.add_argument(
        "--video-size",
        type=int,
        nargs="+",
        default=(720, 1280),
        help="Video size for training. If a single value is provided, it will be used for both height "
        "and width. If two values are provided, they will be used for height and width "
        "respectively.",
    )
    group.add_argument(
        "--video-length",
        type=int,
        default=129,
        help="How many frames to sample from a video. if using 3d vae, the number should be 4n+1",
    )
    # --- prompt ---
    group.add_argument(
        "--prompt",
        type=str,
        default=None,
        help="Prompt for sampling during evaluation.",
    )
    group.add_argument(
        "--seed-type",
        type=str,
        default="auto",
        choices=["file", "random", "fixed", "auto"],
        help="Seed type for evaluation. If file, use the seed from the CSV file. If random, generate a "
        "random seed. If fixed, use the fixed seed given by `--seed`. If auto, `csv` will use the "
        "seed column if available, otherwise use the fixed `seed` value. `prompt` will use the "
        "fixed `seed` value.",
    )
    group.add_argument("--seed", type=int, default=None, help="Seed for evaluation.")

    # Classifier-Free Guidance
    group.add_argument(
        "--neg-prompt", type=str, default=None, help="Negative prompt for sampling."
    )
    group.add_argument(
        "--cfg-scale", type=float, default=1.0, help="Classifier free guidance scale."
    )
    group.add_argument(
        "--embedded-cfg-scale",
        type=float,
        default=None,
        help="Embeded classifier free guidance scale.",
    )

    group.add_argument(
        "--use-fp8",
        action="store_true",
        help="Enable use fp8 for inference acceleration."
    )

    group.add_argument(
        "--reproduce",
        action="store_true",
        help="Enable reproducibility by setting random seeds and deterministic algorithms.",
    )

    return parser

def add_i2v_args(parser: argparse.ArgumentParser):
    group = parser.add_argument_group(title="I2V args")

    group.add_argument(
        "--i2v-mode",
        action="store_true",
        help="Whether to open i2v mode."
    )

    group.add_argument(
        "--i2v-resolution",
        type=str,
        default="720p",
        choices=["720p", "540p", "360p"],
        help="Resolution for i2v inference."
    )

    group.add_argument(
        "--i2v-image-path",
        type=str,
        default="./assets/demo/i2v/imgs/0.png",
        help="Image path for i2v inference."
    )

    group.add_argument(
        "--i2v-condition-type",
        type=str,
        default="token_replace",
        choices=["token_replace", "latent_concat"],
        help="Condition type for i2v model."
    )

    group.add_argument(
        "--i2v-stability", action="store_true", help="Whether to use i2v stability mode."
    )

    return parser


def add_lora_args(parser: argparse.ArgumentParser):
    group = parser.add_argument_group(title="lora args")

    group.add_argument(
        "--use-lora", action="store_true", help="Whether to open lora mode."
    )

    group.add_argument(
        "--lora-path", type=str, default="", help="Weight path for lora model."
    )

    group.add_argument(
        "--lora-scale", type=float, default=1.0, help="Fusion scale for lora model."
    )

    group.add_argument(
        "--lora-rank", type=int, default=64, help="Rank for lora model."
    )

    return parser

def add_parallel_args(parser: argparse.ArgumentParser):
    group = parser.add_argument_group(title="Parallel args")

    # ======================== Model loads ========================
    group.add_argument(
        "--ulysses-degree",
        type=int,
        default=1,
        help="Ulysses degree for xdit parallel args.",
    )
    group.add_argument(
        "--ring-degree",
        type=int,
        default=1,
        help="Ring degree for xdit parallel args.",
    )
    group.add_argument(
        "--xdit-adaptive-size",
        action="store_true",
        help="Make the generated video has no black padding.")


    return parser


def sanity_check_args(args):
    # VAE channels
    vae_pattern = r"\d{2,3}-\d{1,2}c-\w+"
    if not re.match(vae_pattern, args.vae):
        raise ValueError(
            f"Invalid VAE model: {args.vae}. Must be in the format of '{vae_pattern}'."
        )
    vae_channels = int(args.vae.split("-")[1][:-1])
    if args.latent_channels is None:
        args.latent_channels = vae_channels
    if vae_channels != args.latent_channels:
        raise ValueError(
            f"Latent channels ({args.latent_channels}) must match the VAE channels ({vae_channels})."
        )
    return args