hcf_model.py 6.38 KB
Newer Older
mashun1's avatar
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import numpy as np
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models import ModelMixin
from polygraphy import cuda

from .engine import Engine


class TRTModel(ModelMixin, ConfigMixin):
    @register_to_config
    def __init__(
            self,
            in_channels=4,
            model_name="unet-dyn",
            engine_dir="./unet",
            device_id=0,
            fp16=True,
            image_width=1024,
            image_height=1024,
            text_maxlen=77,
            embedding_dim=768,
            max_batch_size=1,
            plugin_path="./ckpts/trt_model/fmha_plugins/9.2_plugin_cuda11/fMHAPlugin.so",
    ):
        super().__init__()
        # create engine
        self.in_channels = in_channels      # For pipeline compatibility
        self.fp16 = fp16
        self.max_batch_size = max_batch_size
        self.model_name = model_name
        self.engine_dir = engine_dir
        self.engine = Engine(self.model_name, self.engine_dir)
        self.engine.activate(plugin_path)
        # create cuda stream
        self.stream = cuda.Stream()
        # create inputs buffer
        self.latent_width = image_width // 8
        self.latent_height = image_height // 8
        self.text_maxlen = text_maxlen
        self.embedding_dim = embedding_dim
        shape_dict = {
            'x': (2 * self.max_batch_size, 4, self.latent_height, self.latent_width),
            't': (2 * self.max_batch_size,),
            'encoder_hidden_states': (2 * self.max_batch_size, self.text_maxlen, self.embedding_dim),
            'text_embedding_mask': (2 * self.max_batch_size, self.text_maxlen),
            'encoder_hidden_states_t5': (2 * self.max_batch_size, 256, 2048),
            'text_embedding_mask_t5': (2 * self.max_batch_size, 256),
            'image_meta_size': (2 * self.max_batch_size, 6),
            'style': (2 * self.max_batch_size,),
            'cos_cis_img': (6400, 88),
            'sin_cis_img': (6400, 88),
            'output': (2 * self.max_batch_size, 8, self.latent_height, self.latent_width),
        }
        device = "cuda:{}".format(device_id)
        self.engine_device = torch.device(device)
        self.engine.allocate_buffers(shape_dict=shape_dict, device=device)

        print("[INFO] Create hcf nv controlled unet success")

    @property
    def device(self):
        return self.engine_device

    def __call__(self, x, t_emb, context, image_meta_size, style, freqs_cis_img0,
                 freqs_cis_img1, text_embedding_mask, encoder_hidden_states_t5, text_embedding_mask_t5):
        return self.forward(x=x, t_emb=t_emb, context=context, image_meta_size=image_meta_size, style=style,
                            freqs_cis_img0=freqs_cis_img0, freqs_cis_img1=freqs_cis_img1,
                            text_embedding_mask=text_embedding_mask, encoder_hidden_states_t5=encoder_hidden_states_t5,
                            text_embedding_mask_t5=text_embedding_mask_t5)

    def get_shared_memory(self):
        return self.engine.get_shared_memory()

    def set_shared_memory(self, shared_memory):
        self.engine.set_shared_memory(shared_memory)

    def forward(self, x, t_emb, context, image_meta_size, style, freqs_cis_img0,
                freqs_cis_img1, text_embedding_mask, encoder_hidden_states_t5, text_embedding_mask_t5):
        x_c = x.half()
        t_emb_c = t_emb.half()
        context_c = context.half()
        image_meta_size_c = image_meta_size.half()
        style_c = style.long()
        freqs_cis_img0_c = freqs_cis_img0.float()
        freqs_cis_img1_c = freqs_cis_img1.float()
        text_embedding_mask_c = text_embedding_mask.long()
        encoder_hidden_states_t5_c = encoder_hidden_states_t5.half()
        text_embedding_mask_t5_c = text_embedding_mask_t5.long()
        dtype = np.float16
        batch_size = x.shape[0] // 2
        if batch_size <= self.max_batch_size:
            sample_inp = cuda.DeviceView(ptr=x_c.reshape(-1).data_ptr(), shape=x_c.shape, dtype=np.float16)
            t_emb_inp = cuda.DeviceView(ptr=t_emb_c.reshape(-1).data_ptr(), shape=t_emb_c.shape, dtype=np.float16)
            embeddings_inp = cuda.DeviceView(ptr=context_c.reshape(-1).data_ptr(), shape=context_c.shape,
                                             dtype=np.float16)
            image_meta_size_inp = cuda.DeviceView(ptr=image_meta_size_c.reshape(-1).data_ptr(),
                                                  shape=image_meta_size_c.shape, dtype=np.float16)
            style_inp = cuda.DeviceView(ptr=style_c.reshape(-1).data_ptr(), shape=style_c.shape, dtype=np.int64)
            freqs_cis_img0_inp = cuda.DeviceView(ptr=freqs_cis_img0_c.reshape(-1).data_ptr(),
                                                 shape=freqs_cis_img0_c.shape, dtype=np.float32)
            freqs_cis_img1_inp = cuda.DeviceView(ptr=freqs_cis_img1_c.reshape(-1).data_ptr(),
                                                 shape=freqs_cis_img1_c.shape, dtype=np.float32)
            text_embedding_mask_inp = cuda.DeviceView(ptr=text_embedding_mask_c.reshape(-1).data_ptr(),
                                                      shape=text_embedding_mask_c.shape, dtype=np.int64)
            encoder_hidden_states_t5_inp = cuda.DeviceView(ptr=encoder_hidden_states_t5_c.reshape(-1).data_ptr(),
                                                           shape=encoder_hidden_states_t5_c.shape, dtype=np.float16)
            text_embedding_mask_t5_inp = cuda.DeviceView(ptr=text_embedding_mask_t5_c.reshape(-1).data_ptr(),
                                                         shape=text_embedding_mask_t5_c.shape, dtype=np.int64)
            feed_dict = {"x": sample_inp,
                         "t": t_emb_inp,
                         "encoder_hidden_states": embeddings_inp,
                         "image_meta_size": image_meta_size_inp,
                         "text_embedding_mask": text_embedding_mask_inp,
                         "encoder_hidden_states_t5": encoder_hidden_states_t5_inp,
                         "text_embedding_mask_t5": text_embedding_mask_t5_inp,
                         "style": style_inp, "cos_cis_img": freqs_cis_img0_inp,
                         "sin_cis_img": freqs_cis_img1_inp}
            latent = self.engine.infer(feed_dict, self.stream)
            return latent['output']
        else:
            raise ValueError(
                "[ERROR] Input batch_size={} execeed max_batch_size={}".format(batch_size, self.max_batch_size))