RL_stage2.py 4.9 KB
Newer Older
mashun1's avatar
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import os
import warnings
from dataclasses import dataclass
import wandb
import torch
from datasets import load_dataset,load_from_disk
from transformers import AutoModelForSequenceClassification, AutoTokenizer,PreTrainedTokenizerBase
import json,random


from trl import (
    ModelConfig,
    ScriptArguments
)

from ppo_utils.ppo_config_medo1 import PPOConfig
from ppo_utils.ppo_trainer_medo1 import PPOTrainer


os.environ["WANDB_MODE"] = "offline"
os.environ['TRANSFORMERS_NO_ADVISORY_WARNINGS'] = 'true'



from transformers import (
    AutoModelForCausalLM,
    AutoModelForSequenceClassification,
    AutoTokenizer,
    HfArgumentParser
)

class ppo_dataset(torch.utils.data.Dataset):
    def __init__(self, data, tokenizer, max_length = 1000,debug = 0):
        self.tokenizer = tokenizer
        self.data = data
        self.max_length = max_length
    
        newdata = []
        for da in self.data:
            if len(da['Open-ended Verifiable Question']) > 0 and len(da['Ground-True Answer']) > 0:
                newdata.append({'question':da['Open-ended Verifiable Question'],'answer':da['Ground-True Answer']})
        print(len(self.data),' -> ',len(newdata))
        self.data = newdata

        self.debug = debug     

    def __getitem__(self, index):
        return self.data[index]

    def get_prompt(self,da):
        message = [{"role": "user", "content": da['question']}]
        prompt = tokenizer.apply_chat_template(message, tokenize=False, add_generation_prompt=True)

        input_token = self.tokenizer(
            prompt,
            padding=False,
            truncation=False,
            add_special_tokens=False,
        )

        da['input_ids'] = input_token["input_ids"]
        return da

    def collate_fn(self, batch):
        data = [ self.get_prompt(da) for da in batch]
        input_ids = [item["input_ids"] for item in data]
        question = [item["question"] for item in data]
        answer = [item["answer"] for item in data]

        max_len = max(len(x) for x in input_ids)
        max_len = min(max_len,self.max_length)
        input_ids = [ [self.tokenizer.pad_token_id]*(max_len-len(item)) + item[:max_len] for item in input_ids]

        if self.debug > 0:
            print('[input_ids]',self.tokenizer.decode(input_ids[-1]))
            print('[question]',question[-1])
            print('[answer]',answer[-1])
            self.debug -= 1
        return {
                "input_ids": torch.LongTensor(input_ids),
                "question": question,
                "answer": answer
            }

    def __len__(self):
        return len(self.data)

if __name__ == "__main__":
    parser = HfArgumentParser((ScriptArguments, PPOConfig, ModelConfig))
    script_args, training_args, model_config = parser.parse_args_into_dataclasses()
    training_args.gradient_checkpointing_kwargs = dict(use_reentrant=False)

    output_dir = training_args.output_dir
    run_name = training_args.run_name
    if run_name not in output_dir:
        output_dir = os.path.join(output_dir,run_name)
        training_args.output_dir = output_dir
    
    tokenizer = AutoTokenizer.from_pretrained(model_config.model_name_or_path)
    reward_model = AutoModelForSequenceClassification.from_pretrained(
        training_args.reward_model_path, attn_implementation="flash_attention_2",num_labels=2
    )
    value_model = AutoModelForSequenceClassification.from_pretrained(
        training_args.value_model_path, trust_remote_code=model_config.trust_remote_code, attn_implementation="flash_attention_2",num_labels=1
    )

    ref_policy = AutoModelForCausalLM.from_pretrained(model_config.model_name_or_path,attn_implementation="flash_attention_2")
    policy = AutoModelForCausalLM.from_pretrained(model_config.model_name_or_path,attn_implementation="flash_attention_2")

    reward_tokenizer = AutoTokenizer.from_pretrained(training_args.reward_model_path)

    if '<|eot_id|>' in tokenizer.vocab:
        assert '<|end_of_text|>' in tokenizer.vocab
        tokenizer.pad_token = '<|end_of_text|>'
        tokenizer.pad_token_id = tokenizer.encode('<|end_of_text|>',add_special_tokens=False)[0]
    assert tokenizer.pad_token_id != tokenizer.eos_token_id

    training_args.stop_token_id = tokenizer.eos_token_id

    eval_ratio = 0.1
    eval_max_num = 200
    with open(script_args.dataset_name) as f:
        data = json.load(f)
    random.shuffle(data)
    eval_num = min(int(len(data) * eval_ratio),eval_max_num)
    train_dataset = ppo_dataset(data[eval_num:],tokenizer, debug = 1)
    eval_dataset = ppo_dataset(data[:eval_num],tokenizer)

    trainer = PPOTrainer(
        config=training_args,
        processing_class=tokenizer,
        reward_processing_class = reward_tokenizer,
        policy=policy,
        ref_policy=ref_policy,
        reward_model=reward_model,
        value_model=value_model,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        data_collator = train_dataset.collate_fn
    )
    trainer.train()