2d_animal_keypoint.md 15.6 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
# 2D Animal Keypoint Dataset

It is recommended to symlink the dataset root to `$MMPOSE/data`.
If your folder structure is different, you may need to change the corresponding paths in config files.

MMPose supported datasets:

- [Animal-Pose](#animal-pose) \[ [Homepage](https://sites.google.com/view/animal-pose/) \]
- [AP-10K](#ap-10k) \[ [Homepage](https://github.com/AlexTheBad/AP-10K/) \]
- [Horse-10](#horse-10) \[ [Homepage](http://www.mackenziemathislab.org/horse10) \]
- [MacaquePose](#macaquepose) \[ [Homepage](http://pri.ehub.kyoto-u.ac.jp/datasets/macaquepose/index.html) \]
- [Vinegar Fly](#vinegar-fly) \[ [Homepage](https://github.com/jgraving/DeepPoseKit-Data) \]
- [Desert Locust](#desert-locust) \[ [Homepage](https://github.com/jgraving/DeepPoseKit-Data) \]
- [Grévy’s Zebra](#grvys-zebra) \[ [Homepage](https://github.com/jgraving/DeepPoseKit-Data) \]
- [ATRW](#atrw) \[ [Homepage](https://cvwc2019.github.io/challenge.html) \]

## Animal-Pose

<!-- [DATASET] -->

<details>
<summary align="right"><a href="http://openaccess.thecvf.com/content_ICCV_2019/html/Cao_Cross-Domain_Adaptation_for_Animal_Pose_Estimation_ICCV_2019_paper.html">Animal-Pose (ICCV'2019)</a></summary>

```bibtex
@InProceedings{Cao_2019_ICCV,
    author = {Cao, Jinkun and Tang, Hongyang and Fang, Hao-Shu and Shen, Xiaoyong and Lu, Cewu and Tai, Yu-Wing},
    title = {Cross-Domain Adaptation for Animal Pose Estimation},
    booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
    month = {October},
    year = {2019}
}
```

</details>

For [Animal-Pose](https://sites.google.com/view/animal-pose/) dataset, we prepare the dataset as follows:

1. Download the images of [PASCAL VOC2012](http://host.robots.ox.ac.uk/pascal/VOC/voc2012/#data), especially the five categories (dog, cat, sheep, cow, horse), which we use as trainval dataset.
2. Download the [test-set](https://drive.google.com/drive/folders/1DwhQobZlGntOXxdm7vQsE4bqbFmN3b9y?usp=sharing) images with raw annotations (1000 images, 5 categories).
3. We have pre-processed the annotations to make it compatible with MMPose. Please download the annotation files from [annotations](https://download.openmmlab.com/mmpose/datasets/animalpose_annotations.tar). If you would like to generate the annotations by yourself, please check our dataset parsing [codes](/tools/dataset/parse_animalpose_dataset.py).

Extract them under {MMPose}/data, and make them look like this:

```text
mmpose
├── mmpose
├── docs
├── tests
├── tools
├── configs
`── data
    │── animalpose

        │-- VOC2012
        │   │-- Annotations
        │   │-- ImageSets
        │   │-- JPEGImages
        │   │-- SegmentationClass
        │   │-- SegmentationObject

        │-- animalpose_image_part2
        │   │-- cat
        │   │-- cow
        │   │-- dog
        │   │-- horse
        │   │-- sheep

        │-- annotations
        │   │-- animalpose_train.json
        │   |-- animalpose_val.json
        │   |-- animalpose_trainval.json
        │   │-- animalpose_test.json

        │-- PASCAL2011_animal_annotation
        │   │-- cat
        │   │   |-- 2007_000528_1.xml
        │   │   |-- 2007_000549_1.xml
        │   │   │-- ...
        │   │-- cow
        │   │-- dog
        │   │-- horse
        │   │-- sheep

        │-- annimalpose_anno2
        │   │-- cat
        │   │   |-- ca1.xml
        │   │   |-- ca2.xml
        │   │   │-- ...
        │   │-- cow
        │   │-- dog
        │   │-- horse
        │   │-- sheep

```

The official dataset does not provide the official train/val/test set split.
We choose the images from PascalVOC for train & val. In total, we have 3608 images and 5117 annotations for train+val, where
2798 images with 4000 annotations are used for training, and 810 images with 1117 annotations are used for validation.
Those images from other sources (1000 images with 1000 annotations) are used for testing.

## AP-10K

<!-- [DATASET] -->

<details>
<summary align="right"><a href="https://arxiv.org/abs/2108.12617">AP-10K (NeurIPS'2021)</a></summary>

```bibtex
@misc{yu2021ap10k,
      title={AP-10K: A Benchmark for Animal Pose Estimation in the Wild},
      author={Hang Yu and Yufei Xu and Jing Zhang and Wei Zhao and Ziyu Guan and Dacheng Tao},
      year={2021},
      eprint={2108.12617},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
```

</details>

For [AP-10K](https://github.com/AlexTheBad/AP-10K/) dataset, images and annotations can be downloaded from [download](https://drive.google.com/file/d/1-FNNGcdtAQRehYYkGY1y4wzFNg4iWNad/view?usp=sharing).
Note, this data and annotation data is for non-commercial use only.

Extract them under {MMPose}/data, and make them look like this:

```text
mmpose
├── mmpose
├── docs
├── tests
├── tools
├── configs
`── data
    │── ap10k
        │-- annotations
        │   │-- ap10k-train-split1.json
        │   |-- ap10k-train-split2.json
        │   |-- ap10k-train-split3.json
        │   │-- ap10k-val-split1.json
        │   |-- ap10k-val-split2.json
        │   |-- ap10k-val-split3.json
        │   |-- ap10k-test-split1.json
        │   |-- ap10k-test-split2.json
        │   |-- ap10k-test-split3.json
        │-- data
        │   │-- 000000000001.jpg
        │   │-- 000000000002.jpg
        │   │-- ...

```

The annotation files in 'annotation' folder contains 50 labeled animal species. There are total 10,015 labeled images with 13,028 instances in the AP-10K dataset. We randonly split them into train, val, and test set following the ratio of 7:1:2.

## Horse-10

<!-- [DATASET] -->

<details>
<summary align="right"><a href="https://openaccess.thecvf.com/content/WACV2021/html/Mathis_Pretraining_Boosts_Out-of-Domain_Robustness_for_Pose_Estimation_WACV_2021_paper.html">Horse-10 (WACV'2021)</a></summary>

```bibtex
@inproceedings{mathis2021pretraining,
  title={Pretraining boosts out-of-domain robustness for pose estimation},
  author={Mathis, Alexander and Biasi, Thomas and Schneider, Steffen and Yuksekgonul, Mert and Rogers, Byron and Bethge, Matthias and Mathis, Mackenzie W},
  booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision},
  pages={1859--1868},
  year={2021}
}
```

</details>

For [Horse-10](http://www.mackenziemathislab.org/horse10) dataset, images can be downloaded from [download](http://www.mackenziemathislab.org/horse10).
Please download the annotation files from [horse10_annotations](https://download.openmmlab.com/mmpose/datasets/horse10_annotations.tar). Note, this data and annotation data is for non-commercial use only, per the authors (see http://horse10.deeplabcut.org for more information).
Extract them under {MMPose}/data, and make them look like this:

```text
mmpose
├── mmpose
├── docs
├── tests
├── tools
├── configs
`── data
    │── horse10
        │-- annotations
        │   │-- horse10-train-split1.json
        │   |-- horse10-train-split2.json
        │   |-- horse10-train-split3.json
        │   │-- horse10-test-split1.json
        │   |-- horse10-test-split2.json
        │   |-- horse10-test-split3.json
        │-- labeled-data
        │   │-- BrownHorseinShadow
        │   │-- BrownHorseintoshadow
        │   │-- ...

```

## MacaquePose

<!-- [DATASET] -->

<details>
<summary align="right"><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/pmc7874091/">MacaquePose (bioRxiv'2020)</a></summary>

```bibtex
@article{labuguen2020macaquepose,
  title={MacaquePose: A novel ‘in the wild’macaque monkey pose dataset for markerless motion capture},
  author={Labuguen, Rollyn and Matsumoto, Jumpei and Negrete, Salvador and Nishimaru, Hiroshi and Nishijo, Hisao and Takada, Masahiko and Go, Yasuhiro and Inoue, Ken-ichi and Shibata, Tomohiro},
  journal={bioRxiv},
  year={2020},
  publisher={Cold Spring Harbor Laboratory}
}
```

</details>

For [MacaquePose](http://pri.ehub.kyoto-u.ac.jp/datasets/macaquepose/index.html) dataset, images can be downloaded from [download](http://pri.ehub.kyoto-u.ac.jp/datasets/macaquepose/download.php).
Please download the annotation files from [macaque_annotations](https://download.openmmlab.com/mmpose/datasets/macaque_annotations.tar).
Extract them under {MMPose}/data, and make them look like this:

```text
mmpose
├── mmpose
├── docs
├── tests
├── tools
├── configs
`── data
    │── macaque
        │-- annotations
        │   │-- macaque_train.json
        │   |-- macaque_test.json
        │-- images
        │   │-- 01418849d54b3005.jpg
        │   │-- 0142d1d1a6904a70.jpg
        │   │-- 01ef2c4c260321b7.jpg
        │   │-- 020a1c75c8c85238.jpg
        │   │-- 020b1506eef2557d.jpg
        │   │-- ...

```

Since the official dataset does not provide the test set, we randomly select 12500 images for training, and the rest for evaluation (see [code](/tools/dataset/parse_macaquepose_dataset.py)).

## Vinegar Fly

<!-- [DATASET] -->

<details>
<summary align="right"><a href="https://www.nature.com/articles/s41592-018-0234-5">Vinegar Fly (Nature Methods'2019)</a></summary>

```bibtex
@article{pereira2019fast,
  title={Fast animal pose estimation using deep neural networks},
  author={Pereira, Talmo D and Aldarondo, Diego E and Willmore, Lindsay and Kislin, Mikhail and Wang, Samuel S-H and Murthy, Mala and Shaevitz, Joshua W},
  journal={Nature methods},
  volume={16},
  number={1},
  pages={117--125},
  year={2019},
  publisher={Nature Publishing Group}
}
```

</details>

For [Vinegar Fly](https://github.com/jgraving/DeepPoseKit-Data) dataset, images can be downloaded from [vinegar_fly_images](https://download.openmmlab.com/mmpose/datasets/vinegar_fly_images.tar).
Please download the annotation files from [vinegar_fly_annotations](https://download.openmmlab.com/mmpose/datasets/vinegar_fly_annotations.tar).
Extract them under {MMPose}/data, and make them look like this:

```text
mmpose
├── mmpose
├── docs
├── tests
├── tools
├── configs
`── data
    │── fly
        │-- annotations
        │   │-- fly_train.json
        │   |-- fly_test.json
        │-- images
        │   │-- 0.jpg
        │   │-- 1.jpg
        │   │-- 2.jpg
        │   │-- 3.jpg
        │   │-- ...

```

Since the official dataset does not provide the test set, we randomly select 90% images for training, and the rest (10%) for evaluation (see [code](/tools/dataset/parse_deepposekit_dataset.py)).

## Desert Locust

<!-- [DATASET] -->

<details>
<summary align="right"><a href="https://elifesciences.org/articles/47994">Desert Locust (Elife'2019)</a></summary>

```bibtex
@article{graving2019deepposekit,
  title={DeepPoseKit, a software toolkit for fast and robust animal pose estimation using deep learning},
  author={Graving, Jacob M and Chae, Daniel and Naik, Hemal and Li, Liang and Koger, Benjamin and Costelloe, Blair R and Couzin, Iain D},
  journal={Elife},
  volume={8},
  pages={e47994},
  year={2019},
  publisher={eLife Sciences Publications Limited}
}
```

</details>

For [Desert Locust](https://github.com/jgraving/DeepPoseKit-Data) dataset, images can be downloaded from [locust_images](https://download.openmmlab.com/mmpose/datasets/locust_images.tar).
Please download the annotation files from [locust_annotations](https://download.openmmlab.com/mmpose/datasets/locust_annotations.tar).
Extract them under {MMPose}/data, and make them look like this:

```text
mmpose
├── mmpose
├── docs
├── tests
├── tools
├── configs
`── data
    │── locust
        │-- annotations
        │   │-- locust_train.json
        │   |-- locust_test.json
        │-- images
        │   │-- 0.jpg
        │   │-- 1.jpg
        │   │-- 2.jpg
        │   │-- 3.jpg
        │   │-- ...

```

Since the official dataset does not provide the test set, we randomly select 90% images for training, and the rest (10%) for evaluation (see [code](/tools/dataset/parse_deepposekit_dataset.py)).

## Grévy’s Zebra

<!-- [DATASET] -->

<details>
<summary align="right"><a href="https://elifesciences.org/articles/47994">Grévy’s Zebra (Elife'2019)</a></summary>

```bibtex
@article{graving2019deepposekit,
  title={DeepPoseKit, a software toolkit for fast and robust animal pose estimation using deep learning},
  author={Graving, Jacob M and Chae, Daniel and Naik, Hemal and Li, Liang and Koger, Benjamin and Costelloe, Blair R and Couzin, Iain D},
  journal={Elife},
  volume={8},
  pages={e47994},
  year={2019},
  publisher={eLife Sciences Publications Limited}
}
```

</details>

For [Grévy’s Zebra](https://github.com/jgraving/DeepPoseKit-Data) dataset, images can be downloaded from [zebra_images](https://download.openmmlab.com/mmpose/datasets/zebra_images.tar).
Please download the annotation files from [zebra_annotations](https://download.openmmlab.com/mmpose/datasets/zebra_annotations.tar).
Extract them under {MMPose}/data, and make them look like this:

```text
mmpose
├── mmpose
├── docs
├── tests
├── tools
├── configs
`── data
    │── zebra
        │-- annotations
        │   │-- zebra_train.json
        │   |-- zebra_test.json
        │-- images
        │   │-- 0.jpg
        │   │-- 1.jpg
        │   │-- 2.jpg
        │   │-- 3.jpg
        │   │-- ...

```

Since the official dataset does not provide the test set, we randomly select 90% images for training, and the rest (10%) for evaluation (see [code](/tools/dataset/parse_deepposekit_dataset.py)).

## ATRW

<!-- [DATASET] -->

<details>
<summary align="right"><a href="https://arxiv.org/abs/1906.05586">ATRW (ACM MM'2020)</a></summary>

```bibtex
@inproceedings{li2020atrw,
  title={ATRW: A Benchmark for Amur Tiger Re-identification in the Wild},
  author={Li, Shuyuan and Li, Jianguo and Tang, Hanlin and Qian, Rui and Lin, Weiyao},
  booktitle={Proceedings of the 28th ACM International Conference on Multimedia},
  pages={2590--2598},
  year={2020}
}
```

</details>

ATRW captures images of the Amur tiger (also known as Siberian tiger, Northeast-China tiger) in the wild.
For [ATRW](https://cvwc2019.github.io/challenge.html) dataset, please download images from
[Pose_train](https://lilablobssc.blob.core.windows.net/cvwc2019/train/atrw_pose_train.tar.gz),
[Pose_val](https://lilablobssc.blob.core.windows.net/cvwc2019/train/atrw_pose_val.tar.gz), and
[Pose_test](https://lilablobssc.blob.core.windows.net/cvwc2019/test/atrw_pose_test.tar.gz).
Note that in the ATRW official annotation files, the key "file_name" is written as "filename". To make it compatible with
other coco-type json files, we have modified this key.
Please download the modified annotation files from [atrw_annotations](https://download.openmmlab.com/mmpose/datasets/atrw_annotations.tar).
Extract them under {MMPose}/data, and make them look like this:

```text
mmpose
├── mmpose
├── docs
├── tests
├── tools
├── configs
`── data
    │── atrw
        │-- annotations
        │   │-- keypoint_train.json
        │   │-- keypoint_val.json
        │   │-- keypoint_trainval.json
        │-- images
        │   │-- train
        │   │   │-- 000002.jpg
        │   │   │-- 000003.jpg
        │   │   │-- ...
        │   │-- val
        │   │   │-- 000001.jpg
        │   │   │-- 000013.jpg
        │   │   │-- ...
        │   │-- test
        │   │   │-- 000000.jpg
        │   │   │-- 000004.jpg
        │   │   │-- ...

```