top_down_img_demo.py 3.94 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# Copyright (c) OpenMMLab. All rights reserved.
import os
import warnings
from argparse import ArgumentParser

import mmcv
from xtcocotools.coco import COCO

from mmpose.apis import (inference_top_down_pose_model, init_pose_model,
                         vis_pose_result)
from mmpose.datasets import DatasetInfo


def main():
    """Visualize the demo images.

    Require the json_file containing boxes.
    """
    parser = ArgumentParser()
    parser.add_argument('pose_config', help='Config file for detection')
    parser.add_argument('pose_checkpoint', help='Checkpoint file')
    parser.add_argument('--img-root', type=str, default='', help='Image root')
    parser.add_argument(
        '--json-file',
        type=str,
        default='',
        help='Json file containing image info.')
    parser.add_argument(
        '--show',
        action='store_true',
        default=False,
        help='whether to show img')
    parser.add_argument(
        '--out-img-root',
        type=str,
        default='',
        help='Root of the output img file. '
        'Default not saving the visualization images.')
    parser.add_argument(
        '--device', default='cuda:0', help='Device used for inference')
    parser.add_argument(
        '--kpt-thr', type=float, default=0.3, help='Keypoint score threshold')
    parser.add_argument(
        '--radius',
        type=int,
        default=4,
        help='Keypoint radius for visualization')
    parser.add_argument(
        '--thickness',
        type=int,
        default=1,
        help='Link thickness for visualization')

    args = parser.parse_args()

    assert args.show or (args.out_img_root != '')

    coco = COCO(args.json_file)
    # build the pose model from a config file and a checkpoint file
    pose_model = init_pose_model(
        args.pose_config, args.pose_checkpoint, device=args.device.lower())

    dataset = pose_model.cfg.data['test']['type']
    dataset_info = pose_model.cfg.data['test'].get('dataset_info', None)
    if dataset_info is None:
        warnings.warn(
            'Please set `dataset_info` in the config.'
            'Check https://github.com/open-mmlab/mmpose/pull/663 for details.',
            DeprecationWarning)
    else:
        dataset_info = DatasetInfo(dataset_info)

    img_keys = list(coco.imgs.keys())

    # optional
    return_heatmap = False

    # e.g. use ('backbone', ) to return backbone feature
    output_layer_names = None

    # process each image
    for i in mmcv.track_iter_progress(range(len(img_keys))):
        # get bounding box annotations
        image_id = img_keys[i]
        image = coco.loadImgs(image_id)[0]
        image_name = os.path.join(args.img_root, image['file_name'])
        ann_ids = coco.getAnnIds(image_id)

        # make person bounding boxes
        person_results = []
        for ann_id in ann_ids:
            person = {}
            ann = coco.anns[ann_id]
            # bbox format is 'xywh'
            person['bbox'] = ann['bbox']
            person_results.append(person)

        # test a single image, with a list of bboxes
        pose_results, returned_outputs = inference_top_down_pose_model(
            pose_model,
            image_name,
            person_results,
            bbox_thr=None,
            format='xywh',
            dataset=dataset,
            dataset_info=dataset_info,
            return_heatmap=return_heatmap,
            outputs=output_layer_names)

        if args.out_img_root == '':
            out_file = None
        else:
            os.makedirs(args.out_img_root, exist_ok=True)
            out_file = os.path.join(args.out_img_root, f'vis_{i}.jpg')

        vis_pose_result(
            pose_model,
            image_name,
            pose_results,
            dataset=dataset,
            dataset_info=dataset_info,
            kpt_score_thr=args.kpt_thr,
            radius=args.radius,
            thickness=args.thickness,
            show=args.show,
            out_file=out_file)


if __name__ == '__main__':
    main()