README.md 3.98 KB
Newer Older
wangsen's avatar
wangsen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# 论文

Higashi: Multiscale and integrative scHi-C analysis
https://doi.org/10.1038/s41587-021-01034-y

# 模型结构


Higashi使用超图神经网络来揭示这个构造的超图中的高阶交互模式。Higashi可以为scHi-C制作嵌入物,用于下游分析。Higashi可以输入单细胞Hi-C接触图谱,从而能够以单细胞分辨率详细表征3D基因组特征,如TAD样结构域边界和A/B区分数。

![Alt text](./image/image.png)


# 算法原理

Higashi的关键算法设计是将scHi-C数据转换为超图。这种转化保留了scHi-C接触图谱的单细胞分辨率和3D基因组特征。具体来说,嵌入scHi-C数据的过程现在相当于学习超图的节点嵌入,输入scHi-C接触图就变成了预测超图中缺失的超边。在Higashi,我们使用我们最近开发的Hyper-SAGNN架构22,这是一个通用的超图表示学习框架,专门针对scHi-C分析进行了大量的新开发

![Alt text](./image/image-1.png)


# 环境配置
Docker(方式一)
推荐使用docker方式运行,提供拉取的docker镜像:
wangsen's avatar
wangsen committed
24

wangsen's avatar
wangsen committed
25
26
```
docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.1.0-ubuntu20.04-dtk24.04.1-py3.10
wangsen's avatar
wangsen committed
27
28
docker run -dit --shm-size 80g --network=host --name=higashi --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -u root -v /opt/hyhal/:/opt/hyhal/:ro image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.1.0-ubuntu20.04-dtk24.04.1-py3.10 /bin/bash
docker exec -it higashi /bin/bash
wangsen's avatar
wangsen committed
29
30
31
32
33
34
```

安装docker中没有的依赖:

```
pip install -r requirements.txt  -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com
wangsen's avatar
wangsen committed
35
python setup.py install
wangsen's avatar
wangsen committed
36
37
38
39
40
```

Dockerfile(方式二)

```
wangsen's avatar
wangsen committed
41
docker build -t higashi:latest .
wangsen's avatar
wangsen committed
42
docker run -dit --shm-size 80g --network=host --name=higashi --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -u root -v /opt/hyhal/:/opt/hyhal/:ro higashi:latest /bin/bash
wangsen's avatar
wangsen committed
43
docker exec -it higashi  /bin/bash
wangsen's avatar
wangsen committed
44
45

```
wangsen's avatar
wangsen committed
46
安装docker中没有的依赖:
wangsen's avatar
wangsen committed
47

wangsen's avatar
wangsen committed
48
49
50
51
```
pip install -r requirements.txt  -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com
python setup.py install
```
wangsen's avatar
wangsen committed
52
53
54
55
56
57
58


Conda(方式三)

1.创建conda虚拟环境:

```
wangsen's avatar
wangsen committed
59
60
conda create -n higashi python=3.10
conda activate higashi 
wangsen's avatar
wangsen committed
61
62
63
64
65
66
67
68
69
70
```

2.关于本项目DCU显卡所需的工具包、深度学习库等均可从光合开发者社区下载安装。
- [DTK 24.04.1](https://cancon.hpccube.com:65024/directlink/1/DTK-24.04.1/Ubuntu20.04.1/DTK-24.04.1-Ubuntu20.04.1-x86_64.tar.gz)
- [Pytorch 2.1](https://cancon.hpccube.com:65024/directlink/4/pytorch/DAS1.2/torch-2.1.0+das.opt1.dtk24042-cp310-cp310-manylinux_2_28_x86_64.whl)


Tips:以上dtk驱动、torch等工具版本需要严格一一对应。


wangsen's avatar
wangsen committed
71
3.其它依赖库参照requirements.txt安装:
wangsen's avatar
wangsen committed
72
```
wangsen's avatar
wangsen committed
73
python setup.py install
wangsen's avatar
wangsen committed
74
75
76
pip install -r requirements.txt -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com
```

wangsen's avatar
wangsen committed
77
78
79
80
81
82
83
# 数据集

```
mkdir -p /work/magroup/ruochiz/Data/scHiC_collection/ramani
mkdir -p /work/magroup/ruochiz/Higashi/Temp/ramani
wget -P  /work/magroup/ruochiz/Higashi/ https://mirror.ghproxy.com/https://raw.githubusercontent.com/hanfang/Topsorter/refs/heads/master/data/hg19.chrom.sizes.txt
wget -P  /work/magroup/ruochiz/Higashi/   https://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/cytoBand.txt.gz
wangsen's avatar
wangsen committed
84
wget -p /work/magroup/ruochiz/Data/scHiC_collection/ramani https://drive.google.com/drive/folders/1S0KOMAj60MxQP6mgPV1OKjn_J-lVpzKM?usp=sharing
wangsen's avatar
wangsen committed
85
86
87
88
89
90
91
92
93
94
95
```

# 测试

##  结合测试数据和Higashi模型生成具备超图分析与接触图嵌入能力的demo

```
python train.py 
```

# 精度
wangsen's avatar
wangsen committed
96

wangsen's avatar
wangsen committed
97
bce:  0.5046, mse:  0.7233,  acc: 86.692 %, pearson: 0.590, spearman: 0.514, elapse: 27.894 s 
wangsen's avatar
wangsen committed
98

wangsen's avatar
wangsen committed
99
# 应用场景
wangsen's avatar
wangsen committed
100
101
102
103
## 算法类别
ai for science
# 行业
科研
wangsen's avatar
wangsen committed
104

wangsen's avatar
wangsen committed
105
106
107
108
109
110
# 热点应用行业


科研  单细胞预测    基因预测

# 源码仓库及问题反馈
wangsen's avatar
wangsen committed
111

wangsen's avatar
wangsen committed
112
http://developer.sourcefind.cn/codes/modelzoo/higashi.git
wangsen's avatar
wangsen committed
113

wangsen's avatar
wangsen committed
114
115


wangsen's avatar
wangsen committed
116
# 参考资料
wangsen's avatar
wangsen committed
117
118


wangsen's avatar
wangsen committed
119
https://github.com/ma-compbio/Higashi/
wangsen's avatar
wangsen committed
120

wangsen's avatar
wangsen committed
121
122
123