backbone.py 9.09 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# ------------------------------------------------------------------------
# H-DETR
# Copyright (c) 2022 Peking University & Microsoft Research Asia. All Rights Reserved.
# Licensed under the MIT-style license found in the LICENSE file in the root directory
# ------------------------------------------------------------------------
# Deformable DETR
# Copyright (c) 2020 SenseTime. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------

"""
Backbone modules.
"""
from collections import OrderedDict

import torch
import torch.nn.functional as F
import torchvision
from torch import nn
from torchvision.models._utils import IntermediateLayerGetter
from typing import Dict, List

from util.misc import NestedTensor, is_main_process

from .position_encoding import build_position_encoding
from .swin_transformer import SwinTransformer


class FrozenBatchNorm2d(torch.nn.Module):
    """
    BatchNorm2d where the batch statistics and the affine parameters are fixed.

    Copy-paste from torchvision.misc.ops with added eps before rqsrt,
    without which any other models than torchvision.models.resnet[18,34,50,101]
    produce nans.
    """

    def __init__(self, n, eps=1e-5):
        super(FrozenBatchNorm2d, self).__init__()
        self.register_buffer("weight", torch.ones(n))
        self.register_buffer("bias", torch.zeros(n))
        self.register_buffer("running_mean", torch.zeros(n))
        self.register_buffer("running_var", torch.ones(n))
        self.eps = eps

    def _load_from_state_dict(
        self,
        state_dict,
        prefix,
        local_metadata,
        strict,
        missing_keys,
        unexpected_keys,
        error_msgs,
    ):
        num_batches_tracked_key = prefix + "num_batches_tracked"
        if num_batches_tracked_key in state_dict:
            del state_dict[num_batches_tracked_key]

        super(FrozenBatchNorm2d, self)._load_from_state_dict(
            state_dict,
            prefix,
            local_metadata,
            strict,
            missing_keys,
            unexpected_keys,
            error_msgs,
        )

    def forward(self, x):
        # move reshapes to the beginning
        # to make it fuser-friendly
        w = self.weight.reshape(1, -1, 1, 1)
        b = self.bias.reshape(1, -1, 1, 1)
        rv = self.running_var.reshape(1, -1, 1, 1)
        rm = self.running_mean.reshape(1, -1, 1, 1)
        eps = self.eps
        scale = w * (rv + eps).rsqrt()
        bias = b - rm * scale
        return x * scale + bias


class BackboneBase(nn.Module):
    def __init__(
        self, backbone: nn.Module, train_backbone: bool, return_interm_layers: bool
    ):
        super().__init__()
        for name, parameter in backbone.named_parameters():
            if (
                not train_backbone
                or "layer2" not in name
                and "layer3" not in name
                and "layer4" not in name
            ):
                parameter.requires_grad_(False)
        if return_interm_layers:
            # return_layers = {"layer1": "0", "layer2": "1", "layer3": "2", "layer4": "3"}
            return_layers = {"layer2": "0", "layer3": "1", "layer4": "2"}
            self.strides = [8, 16, 32]
            self.num_channels = [512, 1024, 2048]
        else:
            return_layers = {"layer4": "0"}
            self.strides = [32]
            self.num_channels = [2048]
        self.body = IntermediateLayerGetter(backbone, return_layers=return_layers)

    def forward(self, tensor_list: NestedTensor):
        xs = self.body(tensor_list.tensors)
        out: Dict[str, NestedTensor] = {}
        for name, x in xs.items():
            m = tensor_list.mask
            assert m is not None
            mask = F.interpolate(m[None].float(), size=x.shape[-2:]).to(torch.bool)[0]
            out[name] = NestedTensor(x, mask)
        return out


class Backbone(BackboneBase):
    """ResNet backbone with frozen BatchNorm."""

    def __init__(
        self,
        name: str,
        train_backbone: bool,
        return_interm_layers: bool,
        dilation: bool,
    ):
        norm_layer = FrozenBatchNorm2d
        backbone = getattr(torchvision.models, name)(
            replace_stride_with_dilation=[False, False, dilation],
            pretrained=is_main_process(),
            norm_layer=norm_layer,
        )
        assert name not in ("resnet18", "resnet34"), "number of channels are hard coded"
        super().__init__(backbone, train_backbone, return_interm_layers)
        if dilation:
            self.strides[-1] = self.strides[-1] // 2


class TransformerBackbone(nn.Module):
    def __init__(
        self, backbone: str, train_backbone: bool, return_interm_layers: bool, args
    ):
        super().__init__()
        out_indices = (1, 2, 3)
        if backbone == "swin_tiny":
            backbone = SwinTransformer(
                embed_dim=96,
                depths=[2, 2, 6, 2],
                num_heads=[3, 6, 12, 24],
                window_size=7,
                ape=False,
                drop_path_rate=args.drop_path_rate,
                patch_norm=True,
                use_checkpoint=True,
                out_indices=out_indices,
            )
            embed_dim = 96
            backbone.init_weights(args.pretrained_backbone_path)
        elif backbone == "swin_small":
            backbone = SwinTransformer(
                embed_dim=96,
                depths=[2, 2, 18, 2],
                num_heads=[3, 6, 12, 24],
                window_size=7,
                ape=False,
                drop_path_rate=args.drop_path_rate,
                patch_norm=True,
                use_checkpoint=True,
                out_indices=out_indices,
            )
            embed_dim = 96
            backbone.init_weights(args.pretrained_backbone_path)
        elif backbone == "swin_large":
            backbone = SwinTransformer(
                embed_dim=192,
                depths=[2, 2, 18, 2],
                num_heads=[6, 12, 24, 48],
                window_size=7,
                ape=False,
                drop_path_rate=args.drop_path_rate,
                patch_norm=True,
                use_checkpoint=True,
                out_indices=out_indices,
            )
            embed_dim = 192
            backbone.init_weights(args.pretrained_backbone_path)
        elif backbone == "swin_large_window12":
            backbone = SwinTransformer(
                pretrain_img_size=384,
                embed_dim=192,
                depths=[2, 2, 18, 2],
                num_heads=[6, 12, 24, 48],
                window_size=12,
                ape=False,
                drop_path_rate=args.drop_path_rate,
                patch_norm=True,
                use_checkpoint=True,
                out_indices=out_indices,
            )
            embed_dim = 192
            backbone.init_weights(args.pretrained_backbone_path)
        else:
            raise NotImplementedError

        for name, parameter in backbone.named_parameters():
            # TODO: freeze some layers?
            if not train_backbone:
                parameter.requires_grad_(False)

        if return_interm_layers:

            self.strides = [8, 16, 32]
            self.num_channels = [
                embed_dim * 2,
                embed_dim * 4,
                embed_dim * 8,
            ]
        else:
            self.strides = [32]
            self.num_channels = [embed_dim * 8]

        self.body = backbone

    def forward(self, tensor_list: NestedTensor):
        xs = self.body(tensor_list.tensors)

        out: Dict[str, NestedTensor] = {}
        for name, x in xs.items():
            m = tensor_list.mask
            assert m is not None
            mask = F.interpolate(m[None].float(), size=x.shape[-2:]).to(torch.bool)[0]
            out[name] = NestedTensor(x, mask)
        return out


class Joiner(nn.Sequential):
    def __init__(self, backbone, position_embedding):
        super().__init__(backbone, position_embedding)
        self.strides = backbone.strides
        self.num_channels = backbone.num_channels

    def forward(self, tensor_list: NestedTensor):
        xs = self[0](tensor_list)
        out: List[NestedTensor] = []
        pos = []
        for name, x in sorted(xs.items()):
            out.append(x)

        # position encoding
        for x in out:
            pos.append(self[1](x).to(x.tensors.dtype))

        return out, pos


def build_backbone(args):
    position_embedding = build_position_encoding(args)
    train_backbone = args.lr_backbone > 0
    return_interm_layers = args.masks or (args.num_feature_levels > 1)
    if "resnet" in args.backbone:
        backbone = Backbone(
            args.backbone, train_backbone, return_interm_layers, args.dilation,
        )
    else:
        backbone = TransformerBackbone(
            args.backbone, train_backbone, return_interm_layers, args
        )
    model = Joiner(backbone, position_embedding)
    return model