test.py 7.41 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import os
import cv2
import torch
import argparse

from datasets import build_dataset, get_coco_api_from_dataset
from models import build_test_model
from datasets.coco_eval import CocoEvaluator
import numpy as np
import util.misc as utils


def test_img(args, model, postprocessors, save_path):
    dataset_test = build_dataset(
        image_set="val", args=args, eval_in_training_set=False,
    )
    sampler_test = torch.utils.data.SequentialSampler(dataset_test)
    data_loader_test = torch.utils.data.DataLoader(
            dataset_test,
            1,
            sampler=sampler_test,
            drop_last=False,
            collate_fn=utils.collate_fn,
            num_workers=0,
            pin_memory=True,)

    base_ds = get_coco_api_from_dataset(dataset_test)
    for img_data, target in data_loader_test:
        img_data = img_data.to(device)
        target = [{k: v.to(device) for k, v in t.items()} for t in target]
        # 模型推理
        outputs = model(img_data)
        # 结果后处理
        orig_target_sizes = torch.stack([t["orig_size"] for t in target], dim=0)
        result = postprocessors['bbox'](outputs, orig_target_sizes)

        res = {target['image_id'].item(): output for target, output in zip(target, result)}
        iou_types = tuple(k for k in ("segm", "bbox") if k in postprocessors.keys())
        coco_evaluator = CocoEvaluator(base_ds, iou_types)
        if coco_evaluator is not None:
            coco_evaluator.update(res)
        res = res[target[0]['image_id'].item()]

        # 输出结果到图片上并保存
        min_score = 0.65
        img_name = dataset_test.coco.loadImgs(target[0]['image_id'].item())[0]['file_name']
        img = cv2.imread(os.path.join(args.coco_path, 'images/val2017', img_name))

        draw_img = img.copy()
        save_status = False
        for i in range(0, 100):
            res_tmp = res['scores']
            if float(res_tmp[i]) > min_score:
                save_status = True
                score = float(res_tmp[i])
                label = int(res['labels'][i].cpu().numpy())
                bbox = res['boxes'][i].cpu().numpy().tolist()
                print("***", label, bbox)
                cv2.putText(draw_img, "{} | {}".format(label, str(score)[:3]), (int(bbox[0]), int(bbox[1])-2), 0, 0.5, (255, 255, 255), 1)
                cv2.rectangle(draw_img, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])), (0, 0, 255), 1)
        if save_status:
            cv2.imwrite("{}/{}".format(save_path, img_name), draw_img)

    if coco_evaluator is not None:
        coco_evaluator.synchronize_between_processes()
        coco_evaluator.accumulate()
        coco_evaluator.summarize()
        print(coco_evaluator)


def get_parser():
    parser = argparse.ArgumentParser("HDETR Detector", add_help=False)
    parser.add_argument("--lr_backbone", default=2e-5, type=float)
    parser.add_argument("--two_stage", default=False, action="store_true")
    parser.add_argument("--dataset_file", default="coco")
    parser.add_argument("--coco_path", default="/home/datasets/COCO2017", type=str)
77
    parser.add_argument("--save_path", default="./result_img", type=str)
chenych's avatar
chenych committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
    parser.add_argument(
        "--cache_mode",
        default=False,
        action="store_true",
        help="whether to cache images on memory",
    )
    parser.add_argument("--pre_trained_model", default="")
    # * Segmentation
    parser.add_argument(
        "--masks",
        action="store_true",
        help="Train segmentation head if the flag is provided",
    )
    # * Backbone
    parser.add_argument(
        "--backbone",
        default="resnet50",
        type=str,
        help="Name of the convolutional backbone to use",
    )
    parser.add_argument(
        "--dilation",
        action="store_true",
        help="If true, we replace stride with dilation in the last convolutional block (DC5)",
    )
    parser.add_argument(
        "--position_embedding",
        default="sine",
        type=str,
        choices=("sine", "learned"),
        help="Type of positional embedding to use on top of the image features",
    )
    parser.add_argument(
        "--position_embedding_scale",
        default=2 * np.pi,
        type=float,
        help="position / size * scale",
    )
    parser.add_argument(
        "--num_feature_levels", default=4, type=int, help="number of feature levels"
    )
    # swin backbone
    parser.add_argument(
        "--pretrained_backbone_path",
        default="./swin_tiny_patch4_window7_224.pkl",
        type=str,
    )
    parser.add_argument("--drop_path_rate", default=0.2, type=float)

    # * Transformer
    parser.add_argument(
        "--enc_layers",
        default=6,
        type=int,
        help="Number of encoding layers in the transformer",
    )
    parser.add_argument(
        "--dec_layers",
        default=6,
        type=int,
        help="Number of decoding layers in the transformer",
    )
    parser.add_argument(
        "--dim_feedforward",
        default=2048,
        type=int,
        help="Intermediate size of the feedforward layers in the transformer blocks",
    )
    parser.add_argument(
        "--hidden_dim",
        default=256,
        type=int,
        help="Size of the embeddings (dimension of the transformer)",
    )
    parser.add_argument(
        "--dropout", default=0.1, type=float, help="Dropout applied in the transformer"
    )
    parser.add_argument(
        "--nheads",
        default=8,
        type=int,
        help="Number of attention heads inside the transformer's attentions",
    )
    parser.add_argument(
        "--num_queries_one2one",
        default=300,
        type=int,
        help="Number of query slots for one-to-one matching",
    )
    parser.add_argument(
        "--num_queries_one2many",
        default=0,
        type=int,
        help="Number of query slots for one-to-many matchining",
    )
    parser.add_argument("--dec_n_points", default=4, type=int)
    parser.add_argument("--enc_n_points", default=4, type=int)
    # Deformable DETR tricks
    parser.add_argument("--mixed_selection", action="store_true", default=False)
    parser.add_argument("--look_forward_twice", action="store_true", default=False)
    # hybrid branch
    parser.add_argument("--k_one2many", default=5, type=int)
    parser.add_argument("--lambda_one2many", default=1.0, type=float)
    parser.add_argument(
        "--device", default="cuda", help="device to use for testing"
    )
    # * eval technologies
    parser.add_argument("--eval", action="store_true")
    # eval in training set
    parser.add_argument("--eval_in_training_set", default=False, action="store_true")
    # topk for eval
    parser.add_argument("--topk", default=100, type=int)
    # * training technologies
    parser.add_argument("--use_fp16", default=False, action="store_true")
    parser.add_argument("--use_checkpoint", default=False, action="store_true")
    return parser


if __name__ == "__main__":
    args = get_parser().parse_args()
    device = torch.device(args.device)
    # checkpoint path
    if not os.path.exists(args.save_path):
        os.makedirs(args.save_path)

    # 构建模型
    model, postprocessors = build_test_model(args)
    model.to(device)
    checkpoint = torch.load(args.pre_trained_model, map_location='cpu')
    model.load_state_dict(checkpoint["model"], False)
    model.num_queries = model.num_queries_one2one
    model.transformer.two_stage_num_proposals = model.num_queries
    model.eval()

    test_img(args, model, postprocessors, args.save_path)