HAT_SRx3_ImageNet-pretrain.yml 1.91 KB
Newer Older
Rayyyyy's avatar
Rayyyyy committed
1
2
3
4
5
6
7
8
9
10
name: HAT_SRx3_ImageNet-pretrain
model_type: HATModel
scale: 3
num_gpu: 1  # set num_gpu: 0 for cpu mode
manual_seed: 0

datasets:
  test_1:  # the 1st test dataset
    name: Set5
    type: PairedImageDataset
Rayyyyy's avatar
Rayyyyy committed
11
    dataroot_gt: ./datasets/Set5/GTmod12
Rayyyyy's avatar
Rayyyyy committed
12
13
14
15
16
17
18
    dataroot_lq: ./datasets/Set5/LRbicx3
    io_backend:
      type: disk

  # test_2:  # the 2nd test dataset
  #   name: Set14
  #   type: PairedImageDataset
Rayyyyy's avatar
Rayyyyy committed
19
  #   dataroot_gt: ./datasets/Set14/GTmod12
Rayyyyy's avatar
Rayyyyy committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
  #   dataroot_lq: ./datasets/Set14/LRbicx3
  #   io_backend:
  #     type: disk

  # test_3:
  #   name: Urban100
  #   type: PairedImageDataset
  #   dataroot_gt: ./datasets/urban100/GTmod3
  #   dataroot_lq: ./datasets/urban100/LRbicx3
  #   io_backend:
  #     type: disk

  # test_4:
  #    name: BSDS100
  #    type: PairedImageDataset
  #    dataroot_gt: ./datasets/BSDS100/GTmod3
  #    dataroot_lq: ./datasets/BSDS100/LRbicx3
  #    io_backend:
  #      type: disk

  # test_5:
  #     name: Manga109
  #     type: PairedImageDataset
  #     dataroot_gt: ./datasets/manga109/GTmod3
  #     dataroot_lq: ./datasets/manga109/LRbicx3
  #     io_backend:
  #       type: disk

# network structures
network_g:
  type: HAT
  upscale: 3
  in_chans: 3
  img_size: 64
  window_size: 16
  compress_ratio: 3
  squeeze_factor: 30
  conv_scale: 0.01
  overlap_ratio: 0.5
  img_range: 1.
  depths: [6, 6, 6, 6, 6, 6]
  embed_dim: 180
  num_heads: [6, 6, 6, 6, 6, 6]
  mlp_ratio: 2
  upsampler: 'pixelshuffle'
  resi_connection: '1conv'


# path
path:
  pretrain_network_g: ./experiments/pretrained_models/HAT_SRx3_ImageNet-pretrain.pth
  strict_load_g: true
  param_key_g: 'params_ema'

# validation settings
val:
  save_img: true
  suffix: ~  # add suffix to saved images, if None, use exp name

  metrics:
    psnr: # metric name, can be arbitrary
      type: calculate_psnr
      crop_border: 3
      test_y_channel: true
    ssim:
      type: calculate_ssim
      crop_border: 3
      test_y_channel: true