deepspeed_to_deepspeed.py 6.67 KB
Newer Older
hepj987's avatar
hepj987 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
#!/usr/bin/env python
import sys
import argparse
import os
import torch

from pathlib import Path

# insert megatron's root dir into sys.path
root_repo_path = str(Path(__file__).resolve().parents[2])
if root_repo_path not in sys.path:
    sys.path.insert(0, root_repo_path)

from megatron.tokenizer.tokenizer import _vocab_size_with_padding
from deepspeed.checkpoint.deepspeed_checkpoint import (
    ARGS_KEY,
    CHECKPOINT_INFO_KEY,
)

from deepspeed.checkpoint import (
    DeepSpeedCheckpoint,
    get_model_ckpt_name_for_rank,
    get_zero_ckpt_name_for_rank,
    get_layer_ckpt_name_for_rank
)

CHECKPOINT_FILE_SUFFIX = '_model_states.pt'
MP_WORLD_SIZE ='mp_world_size'
WORD_EMBEDDINGS_KEY = 'word_embeddings.weight'
ORIGINAL_VOCAB_SIZE = 'original_vocab_size'
PADDED_VOCAB_SIZE = 'padded_vocab_size'

def parse_arguments():
    parser = argparse.ArgumentParser()
    parser.add_argument('--input_folder',
                        default=None,
                        type=str,
                        help='Input DeepSpeed Checkpoint folder')
    parser.add_argument('--output_folder',
                        default=None,
                        type=str,
                        help='Output Megatron checkpoint folder')
    parser.add_argument('--target_tp',
                        default=None,
                        type=int,
                        help='Target TP degree')
    parser.add_argument('--target_pp',
                        default=None,
                        type=int,
                        help='Target PP degree')
    parser.add_argument('--target_dp',
                        default=None,
                        type=int,
                        help='Target DP degree')
    args = parser.parse_args()
    print(f'args = {args}')
    return args



def _save_checkpoint(file_path, chkpt_sd):
    dir, _ = os.path.split(file_path)
    os.makedirs(dir, exist_ok=True)
    torch.save(chkpt_sd, file_path)


def _create_transformer_layer_checkpoint(ds_checkpoint, base_folder, tp_index, pp_index):
    sd_list = ds_checkpoint.get_transformer_state(tp_index, pp_index)
    layer_id_list = ds_checkpoint.get_pp_transformer_map(pp_index)
    assert len(sd_list) == len(layer_id_list)
    for sd, layer_id in zip(sd_list, layer_id_list):
        ckpt_path = get_layer_ckpt_name_for_rank(
            base_folder=base_folder,
            layer_id=layer_id,
            tp_rank=tp_index)
        _save_checkpoint(ckpt_path, sd)


def _strip_vocab_padding(ds_checkpoint, padded_vocab_tensor):
    target_args = ds_checkpoint.get_args()
    checkpoint_info = ds_checkpoint.get_checkpoint_info()
    target_args.tensor_model_parallel_size = ds_checkpoint.tp_degree
    target_args.padded_vocab_size = _vocab_size_with_padding(checkpoint_info[ORIGINAL_VOCAB_SIZE], target_args)
    assert target_args.padded_vocab_size <= padded_vocab_tensor.numel()
    checkpoint_info[PADDED_VOCAB_SIZE] = target_args.padded_vocab_size
    unpadded_vocab_tensor = torch.narrow(padded_vocab_tensor, 0, 0, target_args.padded_vocab_size)
    return unpadded_vocab_tensor.clone()


def _create_embedding_layer_checkpoint(ds_checkpoint, base_folder, tp_index):
    sd = ds_checkpoint.get_embedding_state(tp_index)
    if ds_checkpoint.is_change_tp_degree():
        sd[WORD_EMBEDDINGS_KEY] = _strip_vocab_padding(ds_checkpoint, sd[WORD_EMBEDDINGS_KEY])
    layer_id = ds_checkpoint.get_embedding_layer_id()
    ckpt_path = get_layer_ckpt_name_for_rank(
        base_folder=base_folder,
        tp_rank=tp_index,
        layer_id=layer_id)
    _save_checkpoint(ckpt_path, sd)


def _create_final_norm_layer_checkpoint(ds_checkpoint, base_folder, tp_index):
    sd = ds_checkpoint.get_final_norm_state(tp_index)
    layer_id = ds_checkpoint.get_final_norm_layer_id()
    ckpt_path = get_layer_ckpt_name_for_rank(
        base_folder=base_folder,
        tp_rank=tp_index,
        layer_id=layer_id)
    _save_checkpoint(ckpt_path, sd)


def _create_2d_parallel_checkpoint(ds_checkpoint, base_folder, tp_index,
                                   pp_index):
    sd = ds_checkpoint.get_2d_parallel_state(tp_index=tp_index,
                                             pp_index=pp_index)
    sd[MP_WORLD_SIZE] = ds_checkpoint.tp_degree
    file_id = pp_index * ds_checkpoint.tp_degree + tp_index
    ckpt_path = get_model_ckpt_name_for_rank(base_folder, f'{file_id:02d}')

    # Adjust specific fields
    sd[ARGS_KEY] = ds_checkpoint.get_args()
    sd[ARGS_KEY].tensor_model_parallel_size = ds_checkpoint.tp_degree
    sd[ARGS_KEY].pipeline_model_parallel_size = ds_checkpoint.pp_degree
    sd[CHECKPOINT_INFO_KEY][PADDED_VOCAB_SIZE] = sd[ARGS_KEY].padded_vocab_size
    _save_checkpoint(ckpt_path, sd)


def _create_zero_checkpoint(ds_checkpoint, base_folder, dp_index, pp_index, tp_index):
    _2d_rank = (pp_index * ds_checkpoint.tp_degree) + tp_index
    sd = ds_checkpoint.get_zero_checkpoint_state(
        pp_index=pp_index,
        tp_index=tp_index,
        dp_index=dp_index)

    ckpt_path = get_zero_ckpt_name_for_rank(base_folder=base_folder,
                                            dp_rank=dp_index,
                                            mp_rank=_2d_rank)
    _save_checkpoint(ckpt_path, sd)


def _create_latest_file(base_folder, file_name, latest_tag):
    file_path = os.path.join(base_folder, file_name)
    os.makedirs(base_folder, exist_ok=True)
    with open(file_path, 'w') as f:
        f.write(str(latest_tag))


def main():
    print(f'Convert DeepSpeed Checkpoint to DeepSpeed Checkpoint')

    args = parse_arguments()
    print(
        f'Converting DeepSpeed checkpoint in {args.input_folder} to DeepSpeed checkpoint in {args.output_folder}'
    )

    ds_checkpoint = DeepSpeedCheckpoint(
        args.input_folder,
        args.target_tp,
        args.target_pp,
        args.target_dp)
    iteration = ds_checkpoint.get_iteration()
    latest_tag = f'global_step{iteration}'
    _create_latest_file(args.output_folder,
                        'latest_checkpointed_iteration.txt', iteration)
    _create_latest_file(args.output_folder, 'latest', latest_tag)
    base_folder = os.path.join(args.output_folder, latest_tag)

    for i in range(ds_checkpoint.tp_degree):
        _create_embedding_layer_checkpoint(ds_checkpoint, base_folder, i)
        _create_final_norm_layer_checkpoint(ds_checkpoint, base_folder, i)

        for j in range(ds_checkpoint.pp_degree):
            _create_transformer_layer_checkpoint(ds_checkpoint, base_folder, i, j)
            _create_2d_parallel_checkpoint(ds_checkpoint, base_folder, i, j)

    for i in range(ds_checkpoint.dp_degree):
        for j in range(ds_checkpoint.pp_degree):
            for k in range(ds_checkpoint.tp_degree):
                _create_zero_checkpoint(ds_checkpoint, base_folder, i, j, k)


if __name__ == "__main__":
    main()