"vscode:/vscode.git/clone" did not exist on "65bd13386b096157739bcdb1d31cbb1d832dbf3a"
test_model.py 24.5 KB
Newer Older
hepj987's avatar
hepj987 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
from random import randint
from typing import Set
from unittest.mock import patch

import deepspeed
import torch
from parameterized import parameterized
from torch import nn
import torch.nn.functional as F

from megatron.enums import AttnMaskType
from megatron.model.fused_layer_norm import MixedFusedLayerNorm
from packaging import version

from megatron import initialize_megatron, get_args, get_tokenizer, global_vars
from megatron.model.fused_softmax import ScaledMaskedSoftmax, FusedScaleMaskSoftmax
from megatron.model.utils import attention_mask_func
from megatron.testing_utils import TestCasePlus, mockenv_context, flatten_arguments, torch_assert_equal, \
    torch_assert_close, require_torch_bf16
from megatron.training import setup_model_and_optimizer
import pretrain_gpt
import pretrain_prefix_lm
import finetune_t0_non_causal_decoder


def get_default_args(test_file_dir: str):
    """return a dictionary with key as argument name and value as additional arguments"""
    return {
        # GPT_ARGS
        "--num-layers": "2",
        "--hidden-size": "128",
        "--num-attention-heads": "4",
        "--seq-length": "256",
        "--max-position-embeddings": "256",
        "--micro-batch-size": "2",
        "--global-batch-size": "2",
        "--lr-decay-iters": "320000",
        "--lr-decay-style": "cosine",
        "--lr": "0.00015",
        "--min-lr": "1.0e-5",
        "--train-iters": "5000",
        "--tokenizer-type": "PretrainedFromHF",
        "--tokenizer-name-or-path": "gpt2",
        "--data-impl": "mmap",
        "--split": "949,50,1",
        "--distributed-backend": "nccl",
        "--weight-decay": "1e-2",
        "--clip-grad": "1.0",
        "--lr-warmup-fraction": ".01",
        "--fp16": "",
        "--inference": "",

        "--attention-dropout": "0",
        "--hidden-dropout": "0",

        # OUTPUT_ARGS
        "--log-interval": "10",
        "--save-interval": "500",
        "--eval-interval": "100",
        "--eval-iters": "10",
        "--checkpoint-activations": "",

        # DATA_ARGS

        # DeepSpeed args
        "--deepspeed": "",
        "--deepspeed_config": f"{test_file_dir}/ds_config_inference.json",
        "--zero-stage": "0",
    }


def equal_vectors(tensor1, tensor2, dim=-1):
    """View tensor1 and tensor2 as a list of vectors, and compute equality"""
    return torch.linalg.norm(tensor1 - tensor2, dim=dim) == 0


def iter_out_of_one(one):
    return iter([one])


def get_dummy_mtf_decoder_packed_data(micro_batch_size: int, seq_length: int, vocab_size: int, special_tokens_ids: Set[int]):
    """Code from `tests/test_dataloaders.py"""
    seq_length += 1

    num_segments = torch.randint(1, 5, ())
    segment_ids = torch.zeros(micro_batch_size, seq_length, dtype=torch.long)
    is_inputs = torch.zeros(micro_batch_size, seq_length, dtype=torch.bool)
    for batch_id in range(micro_batch_size):
        # - `*2`: Hack in order to two start_new_segements to be seperated with two tokens at least
        # - `+1`: Hack in order the start_mew_segments not to be 0
        start_new_segments = torch.sort(torch.randperm((seq_length - 2) // 2, )[:num_segments]).values * 2 + 1
        segment_ids[batch_id, start_new_segments] = 1

        end_inputs = [
            torch.randint(low=start_segment, high=end_segment - 1, size=())
            for start_segment, end_segment in zip([0, *start_new_segments], [*start_new_segments, seq_length])
        ]
        for end_input, start_segment in zip(end_inputs, [0, *start_new_segments]):
            is_inputs[batch_id][start_segment: end_input + 1] = True

    segment_ids = torch.cumsum(segment_ids, dim=-1) + 1

    tokens = torch.randint(high=vocab_size, size=(micro_batch_size, seq_length), dtype=torch.long)
    flatten_token_view = tokens.view(-1,)
    for token_id in range(len(flatten_token_view)):
        token = flatten_token_view[token_id]
        # While token is a special tokens we change that token
        while token in special_tokens_ids:
            flatten_token_view[token_id] = (token + 1) % vocab_size
            token = flatten_token_view[token_id]

    return {
        "decoder_token_ids": tokens,
        "decoder_segment_ids": segment_ids,
        "decoder_is_inputs": is_inputs
    }


class MyTestCase(TestCasePlus):
    def setUp(self) -> None:
        super().setUp()

        # We reset all global variables
        global_vars._GLOBAL_ARGS = None
        global_vars._GLOBAL_NUM_MICROBATCHES_CALCULATOR = None
        global_vars._GLOBAL_TOKENIZER = None
        global_vars._GLOBAL_TENSORBOARD_WRITER = None
        global_vars._GLOBAL_ADLR_AUTORESUME = None
        global_vars._GLOBAL_TIMERS = None

        self.dist_env_1_gpu = dict(
            MASTER_ADDR="localhost", MASTER_PORT="9994", RANK="0", LOCAL_RANK="0", WORLD_SIZE="1"
        )

    def test_gpt(self):
        """Test causal invariance, ie past token don't depend on future tokens."""
        command_args = get_default_args(self.test_file_dir_str)

        with patch('sys.argv', flatten_arguments(command_args)):
            with mockenv_context(**self.dist_env_1_gpu):
                deepspeed.init_distributed()
                initialize_megatron()
                args = get_args()
                tokenizer = get_tokenizer()

                model, _, _ = setup_model_and_optimizer(pretrain_gpt.model_provider)
                model = model[0]
                model._config.train_micro_batch_size_per_gpu = args.micro_batch_size
                model.set_train_batch_size(args.micro_batch_size)

                token_ids = torch.randint(args.padded_vocab_size, (args.micro_batch_size, args.seq_length))

                # eod is a special token
                token_ids[token_ids == tokenizer.eod] += 1
                token_ids[token_ids == tokenizer.eod] %= args.padded_vocab_size

                # get a modified version of the first batch, we change a specific index
                changed_index = randint(0, args.seq_length - 2)
                token_ids_changed = token_ids.clone()
                # We increment the token_id by one for that index in order to artificially change the sequence.
                token_ids_changed[:, changed_index] = \
                    (token_ids_changed[:, changed_index] + 1) % args.padded_vocab_size

                output = model.eval_batch(iter_out_of_one({"text": token_ids}), compute_loss=False)
                output_changed = model.eval_batch(iter_out_of_one({"text": token_ids_changed}), compute_loss=False)

                # All token in past should be unchanged
                torch_assert_equal(output[:, :changed_index], output_changed[:, :changed_index])
                # All tokens in the future should have changed
                self.assertFalse(
                    torch.any(equal_vectors(output[:, changed_index:], output_changed[:, changed_index:]))
                )

    def test_prefix_lm_reset_attention_mask(self):
        """
        Test prefix invariances when `reset_attention_mask=True`:
            - Past target tokens don't depend on future target tokens.
            - Target tokens depend on input tokens.
            - Input tokens depend on all other input tokens, but never target tokens.
        """
        command_args = get_default_args(self.test_file_dir_str)

        command_args["--reset-attention-mask"] = ""
        command_args["--loss-on-targets-only"] = ""

        with patch('sys.argv', flatten_arguments(command_args)):
            with mockenv_context(**self.dist_env_1_gpu):
                deepspeed.init_distributed()
                initialize_megatron()
                args = get_args()
                tokenizer = get_tokenizer()

                model, _, _ = setup_model_and_optimizer(pretrain_prefix_lm.model_provider)
                model = model[0]
                model._config.train_micro_batch_size_per_gpu = args.micro_batch_size
                model.set_train_batch_size(args.micro_batch_size)
                # we preprocess batch_fn manually
                model.set_batch_fn(None)

                token_ids = torch.randint(args.padded_vocab_size, (args.micro_batch_size, args.seq_length))

                # eod is a special token, this also guarantees that the whole row is considered as a document.
                token_ids[token_ids == tokenizer.eod] += 1
                token_ids[token_ids == tokenizer.eod] %= args.padded_vocab_size

                # process batch to have non empty prefix
                input_batch, (labels, loss_mask), prefix_indices = pretrain_prefix_lm.get_batch_pipe({"text": token_ids})

                for batch_id in range(len(prefix_indices)):
                    for id in prefix_indices[batch_id]:
                        self.assertTrue(loss_mask[batch_id, id] == 1)
                        self.assertTrue(id > 0)
                        # Make sure that the last prefix token predicts the first token.
                        self.assertTrue(loss_mask[batch_id, id -1] == 1)

                output = model.eval_batch(iter_out_of_one((input_batch, (labels, loss_mask), prefix_indices)), compute_loss=False)

                ## --------------- CHANGE A TARGET TOKEN ---------------------------
                # get a modified version of the first batch
                # guaranteed to exist as each row has at least one partial document
                changed_target_index = prefix_indices[0][0]
                token_ids_changed_target = input_batch[0].clone()
                # We increment the token id on the changed index.
                token_ids_changed_target[0, changed_target_index] = \
                    (token_ids_changed_target[0, changed_target_index] + 1) % args.padded_vocab_size
                # make sure we're not changing a token to eod as it's a special token
                token_ids_changed_target[token_ids_changed_target == tokenizer.eod] += 1
                token_ids_changed_target[token_ids_changed_target == tokenizer.eod] %= args.padded_vocab_size

                # Test change
                output_changed_target = model.eval_batch(iter_out_of_one(((token_ids_changed_target, *input_batch[1:]), (labels, loss_mask), prefix_indices)), compute_loss=False)

                # All token in past should be unchanged
                torch_assert_equal(output[0, :changed_target_index], output_changed_target[0, :changed_target_index])
                # All tokens in the future should have changed
                self.assertFalse(
                    torch.any(
                        equal_vectors(output[0, changed_target_index:], output_changed_target[0, changed_target_index:])
                    )
                )
                # Unchanged changed rows should not change either
                torch_assert_equal(output[1, :], output_changed_target[1, :])

                ## --------------- CHANGE AN INPUT TOKEN ---------------------------
                # Let's change the the last prefix token and make sure that the first token changed
                # guaranteed to be positive as we avoid pathological case previously
                last_prefix_index = prefix_indices[0][0] - 1
                token_ids_changed_input = input_batch[0].clone()
                #  We increment the token id on the changed index.
                token_ids_changed_input[0, last_prefix_index] = \
                    (token_ids_changed_input[0, last_prefix_index] + 1) % args.padded_vocab_size
                # make sure we're not changing a token to eod as it's a special token
                token_ids_changed_input[token_ids_changed_input == tokenizer.eod] += 1
                token_ids_changed_input[token_ids_changed_input == tokenizer.eod] %= args.padded_vocab_size

                output_changed_input = model.eval_batch(iter_out_of_one(((token_ids_changed_input, *input_batch[1:]), (labels, loss_mask), prefix_indices)), compute_loss=False)

                # All tokens should be changed
                self.assertFalse(
                    torch.any(
                        equal_vectors(output[0, :], output_changed_input[0, :])
                    )
                )
                # Unchanged changed rows should not change either
                torch_assert_equal(output[1, :], output_changed_input[1, :])

    def test_prefix_lm_wo_reset_attention_mask(self):
        """
        Test prefix invariances when `reset_attention_mask=False`:
            - Past target tokens don't depend on future target tokens.
            - Target tokens depend on input tokens.
            - Input tokens depend on all other input tokens, but never target tokens.
        """
        command_args = get_default_args(self.test_file_dir_str)

        command_args["--loss-on-targets-only"] = ""

        with patch('sys.argv', flatten_arguments(command_args)):
            with mockenv_context(**self.dist_env_1_gpu):
                deepspeed.init_distributed()
                initialize_megatron()
                args = get_args()

                model, _, _ = setup_model_and_optimizer(pretrain_prefix_lm.model_provider)
                model = model[0]
                model._config.train_micro_batch_size_per_gpu = args.micro_batch_size
                model.set_train_batch_size(args.micro_batch_size)
                # we preprocess batch_fn manually
                model.set_batch_fn(None)

                token_ids = torch.randint(args.padded_vocab_size, (args.micro_batch_size, args.seq_length))
                input_batch, (labels, loss_mask), prefix_indices = pretrain_prefix_lm.get_batch_pipe({"text": token_ids})

                for batch_id in range(len(prefix_indices)):
                    id = prefix_indices[batch_id]
                    self.assertTrue(loss_mask[batch_id, id] == 1)
                    self.assertTrue(id > 0)
                    # Make sure that the last prefix token predicts the first token.
                    self.assertTrue(loss_mask[batch_id, id -1] == 1)

                model.eval_batch(iter_out_of_one((input_batch, (labels, loss_mask), prefix_indices)), compute_loss=False)

                #TODO: Check all invariants

    def test_gpt_rotary_embeddings(self):
        """Test rotary embeddings"""
        command_args = get_default_args(self.test_file_dir_str)

        del command_args["--max-position-embeddings"]
        command_args["--position-embedding-type"] = "rotary"

        with patch('sys.argv', flatten_arguments(command_args)):
            with mockenv_context(**self.dist_env_1_gpu):
                deepspeed.init_distributed()
                initialize_megatron()
                args = get_args()
                tokenizer = get_tokenizer()

                model, _, _ = setup_model_and_optimizer(pretrain_gpt.model_provider)
                model = model[0]
                model._config.train_micro_batch_size_per_gpu = args.micro_batch_size
                model.set_train_batch_size(args.micro_batch_size)

                token_ids = torch.randint(args.padded_vocab_size, (args.micro_batch_size, args.seq_length))

                # eod is a special token
                token_ids[token_ids == tokenizer.eod] += 1
                token_ids[token_ids == tokenizer.eod] %= args.padded_vocab_size

                model.eval_batch(iter_out_of_one({"text": token_ids}), compute_loss=False)

                #TODO: Check all invariants

    @require_torch_bf16
    def test_fused_layer_norm(self):
        command_args = get_default_args(self.test_file_dir_str)

        # Condition to use custom cuda kernel
        command_args["--bf16"] = ""
        del command_args["--fp16"]

        with patch('sys.argv', flatten_arguments(command_args)):
            with mockenv_context(**self.dist_env_1_gpu):
                initialize_megatron()
                args = get_args()

                dummy_input = torch.randn(args.micro_batch_size, args.seq_length, args.hidden_size, device="cuda", dtype=torch.bfloat16)

                normalized_shape = (args.hidden_size,)
                epsilon = 1e-5
                mfln = MixedFusedLayerNorm(normalized_shape, eps=epsilon)

                self.assertTrue(mfln.use_meg_ds_fused_layer_norm, "Expected model to use Megatron-DeepSpeed custom cuda kernel for LayerNorm.")
                self.assertTrue(args.bf16, "Test has to be done in half precision.")

                # We set the weight manually so we simulate state that's not the initialisation
                weight = torch.randn(args.hidden_size, device="cuda", dtype=torch.bfloat16)
                bias = torch.randn(args.hidden_size, device="cuda", dtype=torch.bfloat16)
                mfln.weight = nn.Parameter(weight)
                mfln.bias = nn.Parameter(bias)

                mfln_output = mfln(dummy_input)
                # We check that our layernorm matches pytorch 1.11 onwards
                if version.parse(torch.__version__) >= version.parse("1.11.0"):
                    torch_layer_norm_output = F.layer_norm(dummy_input, normalized_shape, weight, bias, eps=epsilon)
                else:
                    # In this case we use can check that basically it corresponds to the fp32 version
                    torch_layer_norm_output = F.layer_norm(dummy_input.float(), normalized_shape, weight.float(), bias.float(), eps=epsilon).to(torch.bfloat16)

                torch_assert_equal(mfln_output, torch_layer_norm_output)

    @parameterized.expand([(attn_mask_type,) for attn_mask_type in AttnMaskType])
    def test_fused_masked_softmax(self, attn_mask_type: AttnMaskType):
        command_args = get_default_args(self.test_file_dir_str)

        with patch('sys.argv', flatten_arguments(command_args)):
            with mockenv_context(**self.dist_env_1_gpu):
                initialize_megatron()
                args = get_args()

                dummy_input = torch.randn(
                    args.micro_batch_size,
                    args.num_attention_heads,
                    args.seq_length,
                    args.seq_length,
                    device="cuda",
                    dtype=args.params_dtype
                )
                if attn_mask_type == AttnMaskType.causal:
                    dummy_attention_mask = None
                else:
                    dummy_attention_mask = torch.randn(
                        args.micro_batch_size,
                        1, # `args.num_attention_heads` not implemented in our cuda kernel
                        args.seq_length,
                        args.seq_length,
                        device="cuda",
                        dtype=args.params_dtype
                    ) < 0
                scale = torch.rand(())

                fused_scaled_softmax = FusedScaleMaskSoftmax(
                    input_in_fp16=args.params_dtype == torch.float16,
                    input_in_bf16=args.params_dtype == torch.bfloat16,
                    attn_mask_type=attn_mask_type,
                    scaled_masked_softmax_fusion=True,
                    mask_func=attention_mask_func,
                    softmax_in_fp32=True,
                    scale=scale,
                )
                unfused_scaled_softmax = FusedScaleMaskSoftmax(
                    input_in_fp16=args.params_dtype == torch.float16,
                    input_in_bf16=args.params_dtype == torch.bfloat16,
                    attn_mask_type=attn_mask_type,
                    scaled_masked_softmax_fusion=False,
                    mask_func=attention_mask_func,
                    softmax_in_fp32=True,
                    scale=scale,
                )

                self.assertTrue(fused_scaled_softmax.is_kernel_available(dummy_attention_mask, *dummy_input.size()))
                fused_output = fused_scaled_softmax(dummy_input, dummy_attention_mask)
                self.assertFalse(unfused_scaled_softmax.is_kernel_available(dummy_attention_mask, *dummy_input.size()))
                unfused_output = unfused_scaled_softmax(dummy_input, dummy_attention_mask)

                # Test that the nonzeros are the same with the mask
                for i in range(args.num_attention_heads):
                    if dummy_attention_mask is None:
                        # Make sure it's causal, values in the lower triangle should be not zero.
                        non_zero_values = torch.tril(torch.ones_like(fused_output[:, i]))
                        torch_assert_equal(torch.nonzero(fused_output[:, i]), torch.nonzero(non_zero_values))
                    else:
                        torch_assert_equal(torch.nonzero(fused_output[:, i]), torch.nonzero(~dummy_attention_mask[:, 0]))

                # Cuda kernel produces slightly different results
                torch_assert_close(fused_output, unfused_output)


    def test_non_causal_decoder_model_with_packed_input_passed_with_attention_mask_is_not_causal_across_segments(self):
        command_args = get_default_args(self.test_file_dir_str)
        command_args["--position-embedding-type"] = "alibi"

        with patch('sys.argv', flatten_arguments(command_args)):
            with mockenv_context(**self.dist_env_1_gpu):
                deepspeed.init_distributed()
                initialize_megatron()

                args = get_args()
                tokenizer = get_tokenizer()
                # Hack: `gpt2` doesn't have a padding token, so we override that value.
                tokenizer.tokenizer.pad_token_id = tokenizer.tokenizer.eos_token_id

                data = get_dummy_mtf_decoder_packed_data(
                    micro_batch_size=args.micro_batch_size,
                    seq_length=args.seq_length,
                    vocab_size=args.padded_vocab_size,
                    special_tokens_ids={tokenizer.pad}
                )
                model, _, _ = setup_model_and_optimizer(finetune_t0_non_causal_decoder.model_provider)
                model = model[0]
                model._config.train_micro_batch_size_per_gpu = args.micro_batch_size
                model.set_train_batch_size(args.micro_batch_size)

                output = model.eval_batch(iter_out_of_one(data), compute_loss=False)

                ## --------------- CHANGE A TARGET TOKEN ---------------------------
                # change the first token in the first batch to a random value
                change_batch_id = 0
                change_token_id = 0
                token_ids_changed = data["decoder_token_ids"].clone()
                # We increment the token id on the changed index.
                token_ids_changed[change_batch_id, change_token_id] = (token_ids_changed[change_batch_id, change_token_id] + 1) % args.padded_vocab_size
                while token_ids_changed[change_batch_id, change_token_id] in {tokenizer.eod, tokenizer.pad}:
                    token_ids_changed[change_batch_id, change_token_id] = (token_ids_changed[change_batch_id, change_token_id] + 1) % args.padded_vocab_size

                # Test change
                output_changed_target = model.eval_batch(iter_out_of_one({**data, "decoder_token_ids": token_ids_changed}), compute_loss=False)

                first_segment_first_batch_id_end = (torch.nonzero(data["decoder_segment_ids"][change_batch_id, 1:] - data["decoder_segment_ids"][change_batch_id, :-1]) + 1)[0]
                # Check that values changed in segment 1 of batch_id 0
                self.assertFalse(torch.any(
                    equal_vectors(
                        output[change_batch_id, change_token_id:first_segment_first_batch_id_end],
                        output_changed_target[change_batch_id, change_token_id:first_segment_first_batch_id_end]
                    )
                ))
                # Check that values did not change in other segments of batch_id 0
                torch_assert_equal(
                    output[change_batch_id, first_segment_first_batch_id_end:],
                    output_changed_target[change_batch_id, first_segment_first_batch_id_end:]
                )
                # Check that values did not change in other segments in other batches
                non_change_ids = torch.arange(output.shape[0]) != change_batch_id
                torch_assert_equal(output[non_change_ids], output_changed_target[non_change_ids])

                ## --------------- CHANGE A TARGET TOKEN ---------------------------
                # change the last token in the first batch to a pad
                token_ids_changed_pad = data["decoder_token_ids"].clone()
                segment_ids_changed_pad = data["decoder_segment_ids"].clone()
                # We increment the token id on the changed index.
                token_ids_changed_pad[change_batch_id, -1] = tokenizer.pad
                segment_ids_changed_pad[change_batch_id, -1] = 0

                # Test model handles padding correctly
                output_changed_pad = model.eval_batch(iter_out_of_one({**data, "decoder_token_ids": token_ids_changed_pad, "decoder_segment_ids": segment_ids_changed_pad}), compute_loss=False)

                self.assertFalse(torch.any(torch.isnan(output_changed_pad)))