eval_utils.py 3.16 KB
Newer Older
hepj987's avatar
hepj987 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Evaluation utilities."""

import os
import torch
from megatron import get_args
from megatron import print_rank_0
from megatron import mpu
from tasks.vision.finetune_utils import build_data_loader
from tasks.vision.finetune_utils import process_batch
from torchvision import datasets, transforms


def accuracy_func_provider():
    """Provide function that calculates accuracies."""
    args = get_args()
    data_path = args.data_path
    crop_size = args.img_dim

    # mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
    # Build dataloaders.
    val_data_path = os.path.join(data_path[0], "val")
    normalize = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
    transform_val = transforms.Compose(
        [
            transforms.Resize(crop_size),
            transforms.CenterCrop(crop_size),
            transforms.ToTensor(),
            normalize,
        ]
    )
    dataset = datasets.ImageFolder(root=val_data_path, transform=transform_val)

    dataloader = build_data_loader(
        dataset,
        args.micro_batch_size,
        num_workers=args.num_workers,
        drop_last=(mpu.get_data_parallel_world_size() > 1),
    )

    def metrics_func(model, epoch):
        print_rank_0("calculating metrics ...")
        correct, total = calculate_correct_answers(model, dataloader, epoch)
        percent = float(correct) * 100.0 / float(total)
        print_rank_0(
            " >> |epoch: {}| overall: correct / total = {} / {} = "
            "{:.4f} %".format(epoch, correct, total, percent)
        )

    return metrics_func


def calculate_correct_answers(model, dataloader, epoch):
    """Calculate correct over total answers"""

    model.eval()
    with torch.no_grad():
        # For all the batches in the dataset.
        total = 0
        correct = 0
        for _, batch in enumerate(dataloader):
            # Run the model forward.
            images, labels = process_batch(batch)
            logits = model(images).contiguous().float()
            # Add output predictions.
            # Compute the correct answers.
            predicted = torch.argmax(logits, dim=-1)
            corrects = (predicted == labels).float()
            # Add to the counters.
            total += labels.size(0)
            correct += corrects.sum().item()
    model.train()

    # Reduce.
    unreduced = torch.cuda.LongTensor([correct, total])
    torch.distributed.all_reduce(unreduced, group=mpu.get_data_parallel_group())

    # Print on screen.
    correct_ans = unreduced[0].item()
    total_count = unreduced[1].item()
    return correct_ans, total_count